Lipoxin A4
A lipoxin (LX or Lx), an acronym for lipoxygenase interaction product, is a bioactive autacoid metabolite of arachidonic acid made by various cell types. They are categorized as nonclassic eicosanoids and members of the specialized pro-resolving mediator (SPM) family of polyunsaturated fatty acid (PUFA) metabolites. Like other SPMs, LXs form during an inflammatory response and act to resolve it. The first lipoxins identified were lipoxin A4 (LXA4) and lipoxin B4 (LXB4), followed by their respective epimers, the epi-lipoxins 15-epi-LXA4 and 15-epi-LXB4. History LXA4 and LXB4 were first described by Charles Serhan, Mats Hamberg, and Bengt Samuelsson in 1984. They reported that human blood neutrophils, when stimulated, make these two lipoxins and that neutrophils, when stimulated by either of the LXs, mounted superoxide anion (O2−) generation and degranulation responses. Both responses are considered to be pro-inflammatory in that, while aimed at neutralizing invading pathog ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Lipoxygenase
Lipoxygenases () (LOX) are a family of (non- heme) iron-containing enzymes, more specifically oxidative enzymes, most of which catalyze the dioxygenation of polyunsaturated fatty acids in lipids containing a cis,cis-1,4- pentadiene into cell signaling agents that serve diverse roles as autocrine signals that regulate the function of their parent cells, paracrine signals that regulate the function of nearby cells, and endocrine signals that regulate the function of distant cells. The lipoxygenases are related to each other based upon their similar genetic structure and dioxygenation activity. However, one lipoxygenase, ALOXE3, while having a lipoxygenase genetic structure, possesses relatively little dioxygenation activity; rather its primary activity appears to be as an isomerase that catalyzes the conversion of hydroperoxy unsaturated fatty acids to their 1,5- epoxide, hydroxyl derivatives. Lipoxygenases are found in eukaryotes (plants, fungi, animals, protists); whi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Double Bond
In chemistry, a double bond is a covalent bond between two atoms involving four bonding electrons as opposed to two in a single bond. Double bonds occur most commonly between two carbon atoms, for example in alkenes. Many double bonds exist between two different elements: for example, in a carbonyl group between a carbon atom and an oxygen atom. Other common double bonds are found in azo compounds (N=N), imines (C=N), and sulfoxides (S=O). In a skeletal formula, a double bond is drawn as two parallel lines (=) between the two connected atoms; typographically, the equals sign is used for this. Double bonds were introduced in chemical notation by Russian chemist Alexander Butlerov. Double bonds involving carbon are stronger and shorter than single bonds. The bond order is two. Double bonds are also electron-rich, which makes them potentially more reactive in the presence of a strong electron acceptor (as in addition reactions of the halogens). File:Ethene structural.svg, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Neutrophils
Neutrophils are a type of phagocytic white blood cell and part of innate immunity. More specifically, they form the most abundant type of granulocytes and make up 40% to 70% of all white blood cells in humans. Their functions vary in different animals. They are also known as neutrocytes, heterophils or polymorphonuclear leukocytes. They are formed from stem cells in the bone marrow and differentiated into subpopulations of neutrophil-killers and neutrophil-cagers. They are short-lived (between 5 and 135 hours, see ) and highly mobile, as they can enter parts of tissue where other cells/molecules cannot. Neutrophils may be subdivided into segmented neutrophils and banded neutrophils (or bands). They form part of the polymorphonuclear cells family (PMNs) together with basophils and eosinophils. The name ''neutrophil'' derives from staining characteristics on hematoxylin and eosin ( H&E) histological or cytological preparations. Whereas basophilic white blood cells stain dark ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
5-lipoxygenase
Arachidonate 5-lipoxygenase, also known as ALOX5, 5-lipoxygenase, 5-LOX, or 5-LO, is a non-heme iron-containing enzyme (EC 1.13.11.34) that in humans is encoded by the ''ALOX5'' gene. Arachidonate 5-lipoxygenase is a member of the lipoxygenase family of enzymes. It transforms essential fatty acids (Essential fatty acid, EFA) substrates into leukotrienes as well as a wide range of other biologically active products. ALOX5 is a current target for pharmaceutical intervention in a number of diseases. Gene The ''ALOX5'' gene, which occupies 71.9 kilobase pairs (kb) on chromosome 10 (all other human lipoxygenases are clustered together on chromosome 17), is composed of 14 exons divided by 13 introns encoding the mature 78 kilodalton (kDa) ALOX5 protein consisting of 673 amino acids. The gene promoter region of ALOX5 contains 8 GC boxes but lacks TATA boxes or CAT boxes and thus resembles the gene promoters of typical housekeeping genes. Five of the 8 GC boxes are arranged in tandem ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
ALOX15B
Arachidonate 15-lipoxygenase type II is an enzyme that in humans is encoded by the ''ALOX15B'' gene. ALOX15B, also known as 15-lipoxygenase-2 (15-LO-2 or 15-LOX-2), is distinguished from its related oxygenase, ALOX15 or 15-lipoxygenase-1. Function This gene encodes a member of the lipoxygenase family of structurally related nonheme iron dioxygenases involved in the production of fatty acid hydroperoxides. 15-LOX-2 has 38-39% amino acid sequence identity to human 15-LOX-1 and 12-lipoxygenase and 44% amino acid sequence identity to human 5-lipoxygenase. 15-LOX-2 converts arachidonic acid almost exclusively to the ''S'' stereoisomer of 15-Hydroperoxyicosatetraenoic acid which is commonly reduced to the ''S'' stereoisomer 15-Hydroxyeicosatetraenoic acid by ubiquitous cellular peroxidases; it metabolizes linoleic acid less effectively, converting this fatty acid to the ''S'' stereoisomer of 13-hydroperoxyoctadecadienoic acid which is likewise rapidly reduced to the ''S'' stereoisom ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cytochrome P450
Cytochromes P450 (P450s or CYPs) are a Protein superfamily, superfamily of enzymes containing heme as a cofactor (biochemistry), cofactor that mostly, but not exclusively, function as monooxygenases. However, they are not omnipresent; for example, they have not been found in ''Escherichia coli''. In mammals, these enzymes oxidize steroids, fatty acids, xenobiotics, and participate in many biosyntheses. By hydroxylation, CYP450 enzymes convert xenobiotics into hydrophilic derivatives, which are more readily excreted. P450s are, in general, the terminal oxidase enzymes in electron transfer chains, broadly categorized as P450-containing systems. The term "P450" is derived from the spectrophotometry, spectrophotometric peak at the wavelength of the absorption spectroscopy, absorption maximum of the enzyme (450 nanometre, nm) when it is in the redox, reduced state and complexed with carbon monoxide. Most P450s require a protein partner to deliver one or more electrons to reduc ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cyclooxygenase 2
Cyclooxygenase-2 (COX-2), also known as prostaglandin-endoperoxide synthase 2 ( HUGO PTGS2), is an enzyme that in humans is encoded by the ''PTGS2'' gene. In humans it is one of three cyclooxygenases. It is involved in the conversion of arachidonic acid to prostaglandin H2, an important precursor of prostacyclin, which is expressed in inflammation. Function PTGS2 (COX-2), converts arachidonic acid (AA) to prostaglandin endoperoxide H2. PTGSs are targets for NSAIDs and PTGS2 (COX-2) specific inhibitors called coxibs. PTGS-2 is a sequence homodimer. Each monomer of the enzyme has a peroxidase and a PTGS (COX) active site. The PTGS (COX) enzymes catalyze the conversion of AA to prostaglandins in two steps. First, hydrogen is abstracted from carbon 13 of arachidonic acid, and then two molecules of oxygen are added by the PTGS2 (COX-2), giving PGG2. Second, PGG2 is reduced to PGH2 in the peroxidase active site. The synthesized PGH2 is converted to prostaglandins ( PGD2, PG ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
ALOX12
ALOX12 (), also known as arachidonate 12-lipoxygenase, 12-lipoxygenase, 12''S''-Lipoxygenase, 12-LOX, and 12''S''-LOX is a lipoxygenase-type enzyme that in humans is encoded by the ''ALOX12'' gene which is located along with other lipoyxgenases on chromosome 17p13.3. ALOX12 is 75 kilodalton protein composed of 663 amino acids. Nomenclature Other systematic names for ALOX12 include 12S-Lipoxygenase, platelet-type 12-lipoxygenase, arachidonate:oxygen 12-oxidoreductase, Delta12-lipoxygenase, 12Delta-lipoxygenase, and C-12 lipoxygenase. ALOX12, often termed plate platelet-type 12-lipoxygenase, is distinguished from leukocyte-type 12-lipoxygenase which is found in mice, rats, cows, and pigs but not humans. Leukocyte-type 12-lipoxygenase in these animal species shares 73-86% amino acid identity with human ALOX15 but only 57-66% identity with human platelet-type 12-lipoxygenase and, like ALOX15, metabolizes arachidonic acid primarily to 15(''S'')-hydroperoxy-5''Z'',8''Z'',11''Z'',13' ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
ALOX15
ALOX15 (also termed arachidonate 15-lipoxygenase, 15-lipoxygenase-1, 15-LO-1, 15-LOX-1) is, like other lipoxygenases, a seminal enzyme in the metabolism of polyunsaturated fatty acids to a wide range of physiologically and pathologically important products. ▼ Gene Function Kelavkar and Badr (1999) stated that the ALOX15 gene product is implicated in antiinflammation, membrane remodeling, and cancer development/metastasis. Kelavkar and Badr (1999) described experiments yielding data that supported the hypothesis that loss of the TP53 gene, or gain-of-function activities resulting from the expression of its mutant forms, regulates ALOX15 promoter activity in human and in mouse, albeit in directionally opposite manners. These studies defined a direct link between ALOX15 gene activity and an established tumor-suppressor gene located in close chromosomal proximity. Kelavkar and Badr (1999) referred to this as evidence that 15-lipoxygenase is a mutator gene. ▼ Mapping By PCR ana ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
15-lipoxygenase
ALOX15 (also termed arachidonate 15-lipoxygenase, 15-lipoxygenase-1, 15-LO-1, 15-LOX-1) is, like other lipoxygenases, a seminal enzyme An enzyme () is a protein that acts as a biological catalyst by accelerating chemical reactions. The molecules upon which enzymes may act are called substrate (chemistry), substrates, and the enzyme converts the substrates into different mol ... in the metabolism of polyunsaturated fatty acids to a wide range of physiologically and pathologically important products. ▼ Gene Function Kelavkar and Badr (1999) stated that the ALOX15 gene product is implicated in antiinflammation, membrane remodeling, and cancer development/metastasis. Kelavkar and Badr (1999) described experiments yielding data that supported the hypothesis that loss of the TP53 gene, or gain-of-function activities resulting from the expression of its mutant forms, regulates ALOX15 promoter activity in human and in mouse, albeit in directionally opposite manners. These stud ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Epoxide
In organic chemistry, an epoxide is a cyclic ether, where the ether forms a three-atom ring: two atoms of carbon and one atom of oxygen. This triangular structure has substantial ring strain, making epoxides highly reactive, more so than other ethers. They are produced on a large scale for many applications. In general, low molecular weight epoxides are colourless and nonpolar, and often volatile. Nomenclature A compound containing the epoxide functional group can be called an epoxy, epoxide, oxirane, and ethoxyline. Simple epoxides are often referred to as oxides. Thus, the epoxide of ethylene (C2H4) is ethylene oxide (C2H4O). Many compounds have trivial names; for instance, ethylene oxide is called "oxirane". Some names emphasize the presence of the epoxide functional group, as in the compound ''1,2-epoxyheptane'', which can also be called ''1,2-heptene oxide''. A polymer formed from epoxide precursors is called an ''epoxy''. However, few if any of the epoxy groups i ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Maresin
Maresin 1 (MaR1 or 7''R'',14''S''-dihydroxy-4''Z'',8''E'',10''E'',12''Z'',16''Z'',19''Z''-docosahexaenoic acid) is a macrophage-derived mediator of inflammation resolution coined from macrophage mediator in resolving inflammation. Maresin 1, and more recently defined maresins, are 12-lipoxygenase-derived metabolites of the omega-3 fatty acid, docosahexaenoic acid (DHA), that possess potent anti-inflammatory, pro-resolving, protective, and pro-healing properties similar to a variety of other members of the specialized proresolving mediators (SPM) class of polyunsaturated fatty acid (PUFA) metabolites. SPM are dihydroxy, trihydroxy, and epoxy-hydroxy metabolites of long chain PUFA made by certain dioxygenase enzymes viz., cyclooxygenases and lipoxygenases. In addition to the maresins, this class of mediators includes: the 15-lipoxygenase (i.e. ALOX15 and/or possibly ALOX15B)-derived lipoxin A4 and B4 metabolites of the omega 6 fatty acid, arachidonic acid; the cyclooxygenase 2-de ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |