HOME





Linked Field
In mathematics, a linked field is a field for which the quadratic forms attached to quaternion algebras have a common property. Linked quaternion algebras Let ''F'' be a field of characteristic not equal to 2. Let ''A'' = (''a''1,''a''2) and ''B'' = (''b''1,''b''2) be quaternion algebras over ''F''. The algebras ''A'' and ''B'' are linked quaternion algebras over ''F'' if there is ''x'' in ''F'' such that ''A'' is equivalent to (''x'',''y'') and ''B'' is equivalent to (''x'',''z''). The Albert form for ''A'', ''B'' is :q = \left\langle\right\rangle \ . It can be regarded as the difference in the Witt ring of the ternary forms attached to the imaginary subspaces of ''A'' and ''B''. The quaternion algebras are linked if and only if the Albert form is isotropic. Linked fields The field ''F'' is ''linked'' if any two quaternion algebras over ''F'' are linked. Every global and local field is linked since all quadratic forms of degree 6 over such fields are isotropic. The follo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Field (algebra)
In mathematics, a field is a set on which addition, subtraction, multiplication, and division are defined and behave as the corresponding operations on rational and real numbers. A field is thus a fundamental algebraic structure which is widely used in algebra, number theory, and many other areas of mathematics. The best known fields are the field of rational numbers, the field of real numbers and the field of complex numbers. Many other fields, such as fields of rational functions, algebraic function fields, algebraic number fields, and ''p''-adic fields are commonly used and studied in mathematics, particularly in number theory and algebraic geometry. Most cryptographic protocols rely on finite fields, i.e., fields with finitely many elements. The theory of fields proves that angle trisection and squaring the circle cannot be done with a compass and straightedge. Galois theory, devoted to understanding the symmetries of field extensions, provides an elegant proof of the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Local Field
In mathematics, a field ''K'' is called a non-Archimedean local field if it is complete with respect to a metric induced by a discrete valuation ''v'' and if its residue field ''k'' is finite. In general, a local field is a locally compact topological field with respect to a non-discrete topology. The real numbers R, and the complex numbers C (with their standard topologies) are Archimedean local fields. Given a local field, the valuation defined on it can be of either of two types, each one corresponds to one of the two basic types of local fields: those in which the valuation is Archimedean and those in which it is not. In the first case, one calls the local field an Archimedean local field, in the second case, one calls it a non-Archimedean local field. Local fields arise naturally in number theory as completions of global fields. While Archimedean local fields have been quite well known in mathematics for at least 250 years, the first examples of non-Archimedean local ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Field (mathematics)
In mathematics, a field is a set (mathematics), set on which addition, subtraction, multiplication, and division (mathematics), division are defined and behave as the corresponding operations on rational number, rational and real numbers. A field is thus a fundamental algebraic structure which is widely used in algebra, number theory, and many other areas of mathematics. The best known fields are the field of rational numbers, the field of real numbers and the field of complex numbers. Many other fields, such as field of rational functions, fields of rational functions, algebraic function fields, algebraic number fields, and p-adic number, ''p''-adic fields are commonly used and studied in mathematics, particularly in number theory and algebraic geometry. Most cryptographic protocols rely on finite fields, i.e., fields with finitely many element (set), elements. The theory of fields proves that angle trisection and squaring the circle cannot be done with a compass and straighte ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


U-invariant
In mathematics, the universal invariant or ''u''-invariant of a field describes the structure of quadratic forms over the field. The universal invariant ''u''(''F'') of a field ''F'' is the largest dimension of an anisotropic quadratic space over ''F'', or ∞ if this does not exist. Since formally real fields have anisotropic quadratic forms (sums of squares) in every dimension, the invariant is only of interest for other fields. An equivalent formulation is that ''u'' is the smallest number such that every form of dimension greater than ''u'' is isotropic, or that every form of dimension at least ''u'' is universal. Examples * For the complex numbers, ''u''(C) = 1. * If ''F'' is quadratically closed then ''u''(''F'') = 1. * The function field of an algebraic curve over an algebraically closed field has ''u'' ≤ 2; this follows from Tsen's theorem that such a field is quasi-algebraically closed.Lam (2005) p.376 * If ''F'' is a non-real global or local field, or more generall ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Division Algebra
In the field of mathematics called abstract algebra, a division algebra is, roughly speaking, an algebra over a field in which division, except by zero, is always possible. Definitions Formally, we start with a non-zero algebra ''D'' over a field. We call ''D'' a division algebra if for any element ''a'' in ''D'' and any non-zero element ''b'' in ''D'' there exists precisely one element ''x'' in ''D'' with ''a'' = ''bx'' and precisely one element ''y'' in ''D'' such that . For associative algebras, the definition can be simplified as follows: a non-zero associative algebra over a field is a division algebra if and only if it has a multiplicative identity element 1 and every non-zero element ''a'' has a multiplicative inverse (i.e. an element ''x'' with ). Associative division algebras The best-known examples of associative division algebras are the finite-dimensional real ones (that is, algebras over the field R of real numbers, which are finite- dimensional as a vector space ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Biquaternion Algebra
In mathematics, a biquaternion algebra is a compound of quaternion algebras over a field. The biquaternions of William Rowan Hamilton (1844) and the related split-biquaternions and dual quaternions do not form biquaternion algebras in this sense. Definition Let ''F'' be a field of characteristic not equal to 2. A ''biquaternion algebra'' over ''F'' is a tensor product of two quaternion algebras. A biquaternion algebra is a central simple algebra of dimension 16 and degree 4 over the base field: it has exponent (order of its Brauer class in the Brauer group of ''F'') equal to 1 or 2. Albert's theorem Let ''A'' = (''a''1,''a''2) and ''B'' = (''b''1,''b''2) be quaternion algebras over ''F''. The Albert form for ''A'', ''B'' is : q = \left\langle\right\rangle \ . It can be regarded as the difference in the Witt ring of the ternary forms attached to the imaginary subspaces of ''A'' and ''B''. The quaternion algebras are linked if and only if the Albert form is isotropic, o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Pfister Neighbour
In mathematics, a Pfister form is a particular kind of quadratic form, introduced by Albrecht Pfister in 1965. In what follows, quadratic forms are considered over a field ''F'' of characteristic not 2. For a natural number ''n'', an ''n''-fold Pfister form over ''F'' is a quadratic form of dimension 2''n'' that can be written as a tensor product of quadratic forms :\langle\!\langle a_1, a_2, \ldots , a_n \rangle\!\rangle \cong \langle 1, -a_1 \rangle \otimes \langle 1, -a_2 \rangle \otimes \cdots \otimes \langle 1, -a_n \rangle, for some nonzero elements ''a''1, ..., ''a''''n'' of ''F''. (Some authors omit the signs in this definition; the notation here simplifies the relation to Milnor K-theory, discussed below.) An ''n''-fold Pfister form can also be constructed inductively from an (''n''−1)-fold Pfister form ''q'' and a nonzero element ''a'' of ''F'', as q \oplus (-a)q. So the 1-fold and 2-fold Pfister forms look like: :\langle\!\langle a\rangle\!\rangle\cong \langle 1, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Brauer Group
In mathematics, the Brauer group of a field ''K'' is an abelian group whose elements are Morita equivalence classes of central simple algebras over ''K'', with addition given by the tensor product of algebras. It was defined by the algebraist Richard Brauer. The Brauer group arose out of attempts to classify division algebras over a field. It can also be defined in terms of Galois cohomology. More generally, the Brauer group of a scheme is defined in terms of Azumaya algebras, or equivalently using projective bundles. Construction A central simple algebra (CSA) over a field ''K'' is a finite-dimensional associative ''K''-algebra ''A'' such that ''A'' is a simple ring and the center of ''A'' is equal to ''K''. Note that CSAs are in general ''not'' division algebras, though CSAs can be used to classify division algebras. For example, the complex numbers C form a CSA over themselves, but not over R (the center is C itself, hence too large to be CSA over R). The fi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Global Field
In mathematics, a global field is one of two types of fields (the other one is local fields) that are characterized using valuations. There are two kinds of global fields: *Algebraic number field: A finite extension of \mathbb *Global function field: The function field of an irreducible algebraic curve over a finite field, equivalently, a finite extension of \mathbb_q(T), the field of rational functions in one variable over the finite field with q=p^n elements. An axiomatic characterization of these fields via valuation theory was given by Emil Artin and George Whaples in the 1940s. Formal definitions A ''global field'' is one of the following: ;An algebraic number field An algebraic number field ''F'' is a finite (and hence algebraic) field extension of the field of rational numbers Q. Thus ''F'' is a field that contains Q and has finite dimension when considered as a vector space over Q. ;The function field of an irreducible algebraic curve over a finite field A fun ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Quadratic Form
In mathematics, a quadratic form is a polynomial with terms all of degree two (" form" is another name for a homogeneous polynomial). For example, 4x^2 + 2xy - 3y^2 is a quadratic form in the variables and . The coefficients usually belong to a fixed field , such as the real or complex numbers, and one speaks of a quadratic form ''over'' . Over the reals, a quadratic form is said to be '' definite'' if it takes the value zero only when all its variables are simultaneously zero; otherwise it is '' isotropic''. Quadratic forms occupy a central place in various branches of mathematics, including number theory, linear algebra, group theory ( orthogonal groups), differential geometry (the Riemannian metric, the second fundamental form), differential topology ( intersection forms of manifolds, especially four-manifolds), Lie theory (the Killing form), and statistics (where the exponent of a zero-mean multivariate normal distribution has the quadratic form -\mathbf^\math ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Isotropic Quadratic Form
In mathematics, a quadratic form over a field ''F'' is said to be isotropic if there is a non-zero vector on which the form evaluates to zero. Otherwise it is a definite quadratic form. More explicitly, if ''q'' is a quadratic form on a vector space ''V'' over ''F'', then a non-zero vector ''v'' in ''V'' is said to be isotropic if . A quadratic form is isotropic if and only if there exists a non-zero isotropic vector (or null vector) for that quadratic form. Suppose that is quadratic space and ''W'' is a subspace of ''V''. Then ''W'' is called an isotropic subspace of ''V'' if ''some'' vector in it is isotropic, a totally isotropic subspace if ''all'' vectors in it are isotropic, and a definite subspace if it does not contain ''any'' (non-zero) isotropic vectors. The of a quadratic space is the maximum of the dimensions of the totally isotropic subspaces. Over the real numbers, more generally in the case where ''F'' is a real closed field (so that the signature is defined), ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Springer-Verlag
Springer Science+Business Media, commonly known as Springer, is a German multinational publishing company of books, e-books and peer-reviewed journals in science, humanities, technical and medical (STM) publishing. Originally founded in 1842 in Berlin, it expanded internationally in the 1960s, and through mergers in the 1990s and a sale to venture capitalists it fused with Wolters Kluwer and eventually became part of Springer Nature in 2015. Springer has major offices in Berlin, Heidelberg, Dordrecht, and New York City. History Julius Springer founded Springer-Verlag in Berlin in 1842 and his son Ferdinand Springer grew it from a small firm of 4 employees into Germany's then second-largest academic publisher with 65 staff in 1872.Chronology
". Springer Science+Business Media.
In 1964, Springer expanded its business internationally, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]