Lev Schnirelmann
Lev Genrikhovich Schnirelmann (also Shnirelman, Shnirel'man; ; 2 January 1905 – 24 September 1938) was a Soviet mathematician who worked on number theory, topology and differential geometry. Work Schnirelmann sought to prove Goldbach's conjecture. In 1930, using the Brun sieve, he proved that any natural number greater than 1 can be written as the sum of not more than ''C'' prime numbers, where ''C'' is an effectively computable constant. His other fundamental work is joint with Lazar Lyusternik. Together, they developed the '' Lusternik–Schnirelmann category'', as it is called now, based on the previous work by Henri Poincaré, George David Birkhoff, and Marston Morse. The theory gives a global invariant of spaces, and has led to advances in differential geometry and topology. They also proved the theorem of the three geodesics, that a Riemannian manifold topologically equivalent to a sphere has at least three simple closed geodesics. Biography Schnirelmann graduat ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Alexander Gelfond
Alexander Osipovich Gelfond (russian: Алекса́ндр О́сипович Ге́льфонд; 24 October 1906 – 7 November 1968) was a Soviet mathematician. Gelfond's theorem, also known as the Gelfond-Schneider theorem is named after him. Biography Alexander Gelfond was born in Saint Petersburg, Russian Empire, the son of a professional physician and amateur philosopher Osip Gelfond. He entered the Moscow State University in 1924, started his postgraduate studies there in 1927 and obtained his PhD in 1930. His advisors were Aleksandr Khinchin and Vyacheslav Stepanov. In 1930 he stayed for five months in Germany (in Berlin and Göttingen) where he worked with Edmund Landau, Carl Ludwig Siegel and David Hilbert. In 1931 he started teaching as a Professor at the Moscow State University and worked there until the last day of his life. Since 1933 he also worked at the Steklov Institute of Mathematics. In 1939 he was elected a Corresponding member of the Academy of Sci ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Differential Geometry
Differential geometry is a mathematical discipline that studies the geometry of smooth shapes and smooth spaces, otherwise known as smooth manifolds. It uses the techniques of differential calculus, integral calculus, linear algebra and multilinear algebra. The field has its origins in the study of spherical geometry as far back as antiquity. It also relates to astronomy, the geodesy of the Earth, and later the study of hyperbolic geometry by Lobachevsky. The simplest examples of smooth spaces are the plane and space curves and surfaces in the three-dimensional Euclidean space, and the study of these shapes formed the basis for development of modern differential geometry during the 18th and 19th centuries. Since the late 19th century, differential geometry has grown into a field concerned more generally with geometric structures on differentiable manifolds. A geometric structure is one which defines some notion of size, distance, shape, volume, or other rigidifying str ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Lev Pontryagin
Lev Semenovich Pontryagin (russian: Лев Семёнович Понтрягин, also written Pontriagin or Pontrjagin) (3 September 1908 – 3 May 1988) was a Soviet mathematician. He was born in Moscow and lost his eyesight completely due to an unsuccessful eye surgery after a primus stove explosion when he was 14. Despite his blindness he was able to become one of the greatest mathematicians of the 20th century, partially with the help of his mother Tatyana Andreevna who read mathematical books and papers (notably those of Heinz Hopf, J. H. C. Whitehead, and Hassler Whitney) to him. He made major discoveries in a number of fields of mathematics, including optimal control, algebraic topology and differential topology. Work Pontryagin worked on duality theory for homology while still a student. He went on to lay foundations for the abstract theory of the Fourier transform, now called Pontryagin duality. With René Thom, he is regarded as one of the co-founders of cobo ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Closed Geodesic
In differential geometry and dynamical systems, a closed geodesic on a Riemannian manifold is a geodesic that returns to its starting point with the same tangent direction. It may be formalized as the projection of a closed orbit of the geodesic flow on the tangent space of the manifold. Definition In a Riemannian manifold (''M'',''g''), a closed geodesic is a curve \gamma:\mathbb R\rightarrow M that is a geodesic for the metric ''g'' and is periodic. Closed geodesics can be characterized by means of a variational principle. Denoting by \Lambda M the space of smooth 1-periodic curves on ''M'', closed geodesics of period 1 are precisely the critical points of the energy function E:\Lambda M\rightarrow\mathbb R, defined by : E(\gamma)=\int_0^1 g_(\dot\gamma(t),\dot\gamma(t))\,\mathrmt. If \gamma is a closed geodesic of period ''p'', the reparametrized curve t\mapsto\gamma(pt) is a closed geodesic of period 1, and therefore it is a critical point of ''E''. If \gamma is a critical ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Riemannian Manifold
In differential geometry, a Riemannian manifold or Riemannian space , so called after the German mathematician Bernhard Riemann, is a real, smooth manifold ''M'' equipped with a positive-definite inner product ''g''''p'' on the tangent space ''T''''p''''M'' at each point ''p''. The family ''g''''p'' of inner products is called a Riemannian metric (or Riemannian metric tensor). Riemannian geometry is the study of Riemannian manifolds. A common convention is to take ''g'' to be smooth, which means that for any smooth coordinate chart on ''M'', the ''n''2 functions :g\left(\frac,\frac\right):U\to\mathbb are smooth functions. These functions are commonly designated as g_. With further restrictions on the g_, one could also consider Lipschitz Riemannian metrics or measurable Riemannian metrics, among many other possibilities. A Riemannian metric (tensor) makes it possible to define several geometric notions on a Riemannian manifold, such as angle at an intersection, le ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Theorem Of The Three Geodesics
In differential geometry the theorem of the three geodesics, also known as Lyusternik–Schnirelmann theorem, states that every Riemannian manifold with the topology of a sphere has at least three simple closed geodesics (i.e. three embedded geodesic circles). The result can also be extended to quasigeodesics on a convex polyhedron, and to closed geodesics of reversible Finsler 2-spheres. The theorem is sharp: although every Riemannian 2-sphere contains infinitely many distinct closed geodesics, only three of them are guaranteed to have no self-intersections. For example, by a result of Morse if the lengths of three principal axes of an ellipsoid are distinct, but sufficiently close to each other, then the ellipsoid has only three simple closed geodesics. History and proof A geodesic, on a Riemannian surface, is a curve that is locally straight at each of its points. For instance, on the Euclidean plane the geodesics are lines, and on the surface of a sphere the geodesics are g ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Marston Morse
Harold Calvin Marston Morse (March 24, 1892 – June 22, 1977) was an American mathematician best known for his work on the ''calculus of variations in the large'', a subject where he introduced the technique of differential topology now known as Morse theory. The Morse–Palais lemma, one of the key results in Morse theory, is named after him, as is the Thue–Morse sequence, an infinite binary sequence with many applications. In 1933 he was awarded the Bôcher Memorial Prize for his work in mathematical analysis. Biography He was born in Waterville, Maine to Ella Phoebe Marston and Howard Calvin Morse in 1892. He received his bachelor's degree from Colby College (also in Waterville) in 1914. At Harvard University, he received both his master's degree in 1915 and his PhD in 1917. He wrote his PhD thesis, ''Certain Types of Geodesic Motion of a Surface of Negative Curvature'', under the direction of George David Birkhoff. Morse was a Benjamin Peirce Instructor at Harvard in 1 ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
George David Birkhoff
George David Birkhoff (March 21, 1884 – November 12, 1944) was an American mathematician best known for what is now called the ergodic theorem. Birkhoff was one of the most important leaders in American mathematics in his generation, and during his time he was considered by many to be the preeminent American mathematician. The George D. Birkhoff House, his residence in Cambridge, Massachusetts, has been designated a National Historic Landmark. Personal life He was born in Overisel Township, Michigan, the son of David Birkhoff and Jane Gertrude Droppers. The mathematician Garrett Birkhoff (1911–1996) was his son. Career Birkhoff obtained his A.B. and A.M. from Harvard University. He completed his Ph.D. in 1907, on differential equations, at the University of Chicago. While E. H. Moore was his supervisor, he was most influenced by the writings of Henri Poincaré. After teaching at the University of Wisconsin–Madison and Princeton University, he taught at Harvard from ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Henri Poincaré
Jules Henri Poincaré ( S: stress final syllable ; 29 April 1854 – 17 July 1912) was a French mathematician, theoretical physicist, engineer, and philosopher of science. He is often described as a polymath, and in mathematics as "The Last Universalist", since he excelled in all fields of the discipline as it existed during his lifetime. As a mathematician and physicist, he made many original fundamental contributions to pure and applied mathematics, mathematical physics, and celestial mechanics. In his research on the three-body problem, Poincaré became the first person to discover a chaotic deterministic system which laid the foundations of modern chaos theory. He is also considered to be one of the founders of the field of topology. Poincaré made clear the importance of paying attention to the invariance of laws of physics under different transformations, and was the first to present the Lorentz transformations in their modern symmetrical form. Poincaré disc ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Lazar Lyusternik
Lazar Aronovich Lyusternik (also Lusternik, Lusternick, Ljusternik; ; 31 December 1899, in Zduńska Wola, Congress Poland, Russian Empire – 23 July 1981, in Moscow, Soviet Union) was a Soviet mathematician. He is famous for his work in topology and differential geometry, to which he applied the variational principle. Using the theory he introduced, together with Lev Schnirelmann, he proved the theorem of the three geodesics, a conjecture by Henri Poincaré that every convex body in 3-dimensions has at least three simple closed geodesics. The ellipsoid with distinct but nearly equal axis is the critical case with exactly three closed geodesics. The ''Lusternik–Schnirelmann theory'', as it is called now, is based on the previous work by Poincaré, David Birkhoff, and Marston Morse. It has led to numerous advances in differential geometry and topology. For this work Lyusternik received the Stalin Prize in 1946. In addition to serving as a professor of mathematics at Moscow ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematische Annalen
''Mathematische Annalen'' (abbreviated as ''Math. Ann.'' or, formerly, ''Math. Annal.'') is a German mathematical research journal founded in 1868 by Alfred Clebsch and Carl Neumann. Subsequent managing editors were Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguignon, Wolfgang Lück, and Nigel Hitchin. Currently, the managing editor of Mathematische Annalen is Thomas Schick. Volumes 1–80 (1869–1919) were published by Teubner. Since 1920 (vol. 81), the journal has been published by Springer. In the late 1920s, under the editorship of Hilbert, the journal became embroiled in controversy over the participation of L. E. J. Brouwer on its editorial board, a spillover from the foundational Brouwer–Hilbert controversy. Between 1945 and 1947 the journal briefly ceased publication. References External links''Mathematische Annalen''homepage at Springer Springer or springers may refe ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Prime Number
A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only ways of writing it as a product, or , involve 5 itself. However, 4 is composite because it is a product (2 × 2) in which both numbers are smaller than 4. Primes are central in number theory because of the fundamental theorem of arithmetic: every natural number greater than 1 is either a prime itself or can be factorized as a product of primes that is unique up to their order. The property of being prime is called primality. A simple but slow method of checking the primality of a given number n, called trial division, tests whether n is a multiple of any integer between 2 and \sqrt. Faster algorithms include the Miller–Rabin primality test, which is fast but has a small chance of error, and the AKS primality test, which alw ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |