J-integral
The J-integral represents a way to calculate the strain energy release rate, or work (energy) per unit fracture surface area, in a material. The theoretical concept of J-integral was developed in 1967 by G. P. Cherepanov and independently in 1968 by James R. Rice,J. R. Rice, ''A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks'', Journal of Applied Mechanics, 35, 1968, pp. 379–386. who showed that an energetic contour path integral (called ''J'') was independent of the path around a crack. Experimental methods were developed using the integral that allowed the measurement of critical fracture properties in sample sizes that are too small for Linear Elastic Fracture Mechanics (LEFM) to be valid.Lee, R. F., & Donovan, J. A. (1987). J-integral and crack opening displacement as crack initiation criteria in natural rubber in pure shear and tensile specimens. Rubber chemistry and technology, 60(4), 674–688/ref> These experiments ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Strain Energy Release Rate
In fracture mechanics, the energy release rate, G, is the rate at which energy is transformed as a material undergoes fracture. Mathematically, the energy release rate is expressed as the decrease in total potential energy per increase in fracture surface area, and is thus expressed in terms of energy per unit area. Various energy balances can be constructed relating the energy released during fracture to the energy of the resulting new surface, as well as other dissipative processes such as plasticity and heat generation. The energy release rate is central to the field of fracture mechanics when solving problems and estimating material properties related to fracture and fatigue. Definition The energy release rate G is defined as the instantaneous loss of total potential energy \Pi per unit crack growth area s, : G \equiv -\frac , where the total potential energy is written in terms of the total strain energy \Omega, surface traction \mathbf, displacement \mathbf, an ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Fracture Mechanics
Fracture mechanics is the field of mechanics concerned with the study of the propagation of cracks in materials. It uses methods of analytical solid mechanics to calculate the driving force on a crack and those of experimental solid mechanics to characterize the material's resistance to fracture. Theoretically, the stress ahead of a sharp crack tip becomes infinite and cannot be used to describe the state around a crack. Fracture mechanics is used to characterise the loads on a crack, typically using a single parameter to describe the complete loading state at the crack tip. A number of different parameters have been developed. When the plastic zone at the tip of the crack is small relative to the crack length the stress state at the crack tip is the result of elastic forces within the material and is termed linear elastic fracture mechanics (LEFM) and can be characterised using the stress intensity factor K. Although the load on a crack can be arbitrary, in 1957 G. Irwin foun ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Fracture Toughness
In materials science, fracture toughness is the critical stress intensity factor of a sharp Fracture, crack where propagation of the crack suddenly becomes rapid and unlimited. It is a material property that quantifies its ability to resist crack propagation and failure under applied stress. A component's thickness affects the constraint conditions at the tip of a crack with thin components having plane stress conditions, leading to ductile behavior and thick components having plane strain conditions, where the constraint increases, leading to brittle failure. Plane strain conditions give the lowest fracture toughness value which is a material properties, material property. The critical value of stress intensity factor in Fracture mechanics, mode I loading measured under plane strain conditions is known as the plane strain fracture toughness, denoted K_\text. When a test fails to meet the thickness and other test requirements that are in place to ensure plane strain conditions, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Stress (mechanics)
In continuum mechanics, stress is a physical quantity that describes forces present during deformation. For example, an object being pulled apart, such as a stretched elastic band, is subject to ''tensile'' stress and may undergo elongation. An object being pushed together, such as a crumpled sponge, is subject to ''compressive'' stress and may undergo shortening. The greater the force and the smaller the cross-sectional area of the body on which it acts, the greater the stress. Stress has dimension of force per area, with SI units of newtons per square meter (N/m2) or pascal (Pa). Stress expresses the internal forces that neighbouring particles of a continuous material exert on each other, while ''strain'' is the measure of the relative deformation of the material. For example, when a solid vertical bar is supporting an overhead weight, each particle in the bar pushes on the particles immediately below it. When a liquid is in a closed container under pressure, each ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematical Singularity
In mathematics, a singularity is a point at which a given mathematical object is not defined, or a point where the mathematical object ceases to be well-behaved in some particular way, such as by lacking differentiability or analyticity. For example, the reciprocal function f(x) = 1/x has a singularity at x = 0, where the value of the function is not defined, as involving a division by zero. The absolute value function g(x) = , x, also has a singularity at x = 0, since it is not differentiable there. The algebraic curve In mathematics, an affine algebraic plane curve is the zero set of a polynomial in two variables. A projective algebraic plane curve is the zero set in a projective plane of a homogeneous polynomial in three variables. An affine algebraic plane cu ... defined by \left\ in the (x, y) coordinate system has a singularity (called a cusp (singularity), cusp) at (0, 0). For singularities in algebraic geometry, see singular point of an algebraic variety. For singul ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Simply Connected
In topology, a topological space is called simply connected (or 1-connected, or 1-simply connected) if it is path-connected and every Path (topology), path between two points can be continuously transformed into any other such path while preserving the two endpoints in question. Intuitively, this corresponds to a space that has no disjoint parts and no holes that go completely through it, because two paths going around different sides of such a hole cannot be continuously transformed into each other. The fundamental group of a topological space is an indicator of the failure for the space to be simply connected: a path-connected topological space is simply connected if and only if its fundamental group is trivial. Definition and equivalent formulations A topological space X is called if it is path-connected and any Loop (topology), loop in X defined by f : S^1 \to X can be contracted to a point: there exists a continuous map F : D^2 \to X such that F restricted to S^1 is f. Here, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Surface Traction
Traction, traction force or tractive force is a force used to generate motion between a body and a tangential surface, through the use of either dry friction or shear force. It has important applications in vehicles, as in ''tractive effort''. ''Traction'' can also refer to the ''maximum'' tractive force between a body and a surface, as limited by available friction; when this is the case, traction is often expressed as the ratio of the maximum tractive force to the normal force and is termed the ''coefficient of traction'' (similar to coefficient of friction). It is the force which makes an object move over the surface by overcoming all the resisting forces like friction, normal loads (load acting on the tiers in negative ''Z'' axis), air resistance, rolling resistance, etc. Definitions Traction can be defined as: In vehicle dynamics, tractive force is closely related to the terms tractive effort and drawbar pull, though all three terms have different definitions. Coeffici ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Path Independence
Path dependence is a concept in the social sciences, referring to processes where past events or decisions constrain later events or decisions. It can be used to refer to outcomes at a single point in time or to long-run equilibria of a process. Path dependence has been used to describe institutions, technical standards, patterns of economic or social development, organizational behavior, and more. In common usage, the phrase can imply two types of claims. The first is the broad concept that "history matters", often articulated to challenge explanations that pay insufficient attention to historical factors. This claim can be formulated simply as "the future development of an economic system is affected by the path it has traced out in the past" or "particular events in the past can have crucial effects in the future." The second is a more specific claim about how past events or decisions affect future events or decisions in significant or disproportionate ways, through mechanisms s ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Solid Mechanics
Solid mechanics (also known as mechanics of solids) is the branch of continuum mechanics that studies the behavior of solid materials, especially their motion and deformation (mechanics), deformation under the action of forces, temperature changes, phase (chemistry), phase changes, and other external or internal agents. Solid mechanics is fundamental for civil engineering, civil, Aerospace engineering, aerospace, nuclear engineering, nuclear, Biomedical engineering, biomedical and mechanical engineering, for geology, and for many branches of physics and chemistry such as materials science. It has specific applications in many other areas, such as understanding the anatomy of living beings, and the design of dental prosthesis, dental prostheses and surgical implants. One of the most common practical applications of solid mechanics is the Euler–Bernoulli beam theory, Euler–Bernoulli beam equation. Solid mechanics extensively uses tensors to describe stresses, strains, and the r ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Elasticity (physics)
In physics and materials science, elasticity is the ability of a body to resist a distorting influence and to return to its original size and shape when that influence or force is removed. Solid objects will deform when adequate loads are applied to them; if the material is elastic, the object will return to its initial shape and size after removal. This is in contrast to ''plasticity'', in which the object fails to do so and instead remains in its deformed state. The physical reasons for elastic behavior can be quite different for different materials. In metals, the Crystal structure, atomic lattice changes size and shape when forces are applied (energy is added to the system). When forces are removed, the lattice goes back to the original lower energy state. For rubber elasticity, rubbers and other polymers, elasticity is caused by the stretching of polymer chains when forces are applied. Hooke's law states that the force required to deform elastic objects should be Prop ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Green's Theorem
In vector calculus, Green's theorem relates a line integral around a simple closed curve to a double integral over the plane region (surface in \R^2) bounded by . It is the two-dimensional special case of Stokes' theorem (surface in \R^3). In one dimension, it is equivalent to the fundamental theorem of calculus. In three dimensions, it is equivalent to the divergence theorem. Theorem Let be a positively oriented, piecewise smooth, simple closed curve in a plane, and let be the region bounded by . If and are functions of defined on an open region containing and have continuous partial derivatives there, then \oint_C (L\, dx + M\, dy) = \iint_ \left(\frac - \frac\right) dA where the path of integration along is counterclockwise. Application In physics, Green's theorem finds many applications. One is solving two-dimensional flow integrals, stating that the sum of fluid outflowing from a volume is equal to the total outflow summed about an enclosing area. ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |