Ieke Moerdijk
Izak "Ieke" Moerdijk (; born 23 January 1958) is a Dutch mathematician, currently working at Utrecht University, who in 2012 won the Spinoza Prize. Education and career Moerdijk studied mathematics, philosophy and general linguistics at the University of Amsterdam. He obtained his PhD ''cum laude'' in 1985 at the same institution. His thesis was entitled ''Topics in intuitionism and topos theory'' and was written under the supervision of Anne Sjerp Troelstra. After that, he worked as postdoctoral researcher at the University of Chicago and University of Cambridge, Cambridge. From 1988 to 2011 he was professor at Utrecht University. After working at the Mathematical Institute of the Radboud University Nijmegen for a few years, he returned to Utrecht University in 2016. In 2000 Moerdijk was an invited speaker to the 3rd European Congress of Mathematics. He was elected member of the Royal Netherlands Academy of Arts and Sciences in 2006 and of the Academia Europaea in 2014. Moerd ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Oberwolfach
Oberwolfach () is a town in the district of Ortenau (district), Ortenau in Baden-Württemberg, Germany. It is the site of the Oberwolfach Research Institute for Mathematics, or Mathematisches Forschungsinstitut Oberwolfach. Geography Geographical situation The town of Oberwolfach lies between 270 and 948 meters above sea level in the central Schwarzwald (Black Forest) on the river Wolf (Fluss), Wolf, a tributary of the Kinzig (Rhine), Kinzig. Neighbouring localities The district is neighboured by Bad Peterstal-Griesbach to the north, Bad Rippoldsau-Schapbach in Freudenstadt (district), Landkreis Freudenstadt to the east, by the towns of Wolfach and Hausach to the south, and by Oberharmersbach to the west. Demographics Population development: References External links Gemeinde Oberwolfach: Official Homepage (in German) Oberwolfach Mineral Museum [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Royal Netherlands Academy Of Arts And Sciences
The Royal Netherlands Academy of Arts and Sciences (, KNAW) is an organization dedicated to the advancement of science and literature in the Netherlands. The academy is housed in the Trippenhuis in Amsterdam. In addition to various advisory and administrative functions it operates a number of research institutes and awards many prizes, including the Lorentz Medal in theoretical physics, the Dr Hendrik Muller Prize for Behavioural and Social Science and the Heineken Prizes. Main functions The academy advises the Dutch government on scientific matters. While its advice often pertains to genuine scientific concerns, it also counsels the government on such topics as policy on careers for researchers or the Netherlands' contribution to major international projects. The academy offers solicited and unsolicited advice to parliament, ministries, universities and research institutes, funding agencies and international organizations. * Advising the government on matters related to ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Lie Groupoid
In mathematics, a Lie groupoid is a groupoid where the set \operatorname of objects and the set \operatorname of morphisms are both manifolds, all the category operations (source and target, composition, identity-assigning map and inversion) are smooth, and the source and target operations :s,t : \operatorname \to \operatorname are submersions. A Lie groupoid can thus be thought of as a "many-object generalization" of a Lie group, just as a groupoid is a many-object generalization of a group. Accordingly, while Lie groups provide a natural model for (classical) continuous symmetries, Lie groupoids are often used as model for (and arise from) generalised, point-dependent symmetries. Extending the correspondence between Lie groups and Lie algebras, Lie groupoids are the global counterparts of Lie algebroids. Lie groupoids were introduced by Charles Ehresmann under the name ''differentiable groupoids''. Definition and basic concepts A Lie groupoid consists of * two smooth m ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Foliation
In mathematics (differential geometry), a foliation is an equivalence relation on an topological manifold, ''n''-manifold, the equivalence classes being connected, injective function, injectively immersed submanifolds, all of the same dimension ''p'', modeled on the manifold decomposition, decomposition of the real coordinate space R''n'' into the cosets ''x'' + R''p'' of the standardly embedding, embedded subspace topology, subspace R''p''. The equivalence classes are called the leaves of the foliation. If the manifold and/or the submanifolds are required to have a piecewise-linear manifold, piecewise-linear, differentiable manifold, differentiable (of class ''Cr''), or analytic manifold, analytic structure then one defines piecewise-linear, differentiable, or analytic foliations, respectively. In the most important case of differentiable foliation of class ''Cr'' it is usually understood that ''r'' ≥ 1 (otherwise, ''C''0 is a topological foliation). The number ''p'' (the dime ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Differential Geometry
Differential geometry is a Mathematics, mathematical discipline that studies the geometry of smooth shapes and smooth spaces, otherwise known as smooth manifolds. It uses the techniques of Calculus, single variable calculus, vector calculus, linear algebra and multilinear algebra. The field has its origins in the study of spherical geometry as far back as classical antiquity, antiquity. It also relates to astronomy, the geodesy of the Earth, and later the study of hyperbolic geometry by Nikolai Lobachevsky, Lobachevsky. The simplest examples of smooth spaces are the Differential geometry of curves, plane and space curves and Differential geometry of surfaces, surfaces in the three-dimensional Euclidean space, and the study of these shapes formed the basis for development of modern differential geometry during the 18th and 19th centuries. Since the late 19th century, differential geometry has grown into a field concerned more generally with geometric structures on differentiable ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Topos Theory
In mathematics, a topos (, ; plural topoi or , or toposes) is a category that behaves like the category of sheaves of sets on a topological space (or more generally, on a site). Topoi behave much like the category of sets and possess a notion of localization. The Grothendieck topoi find applications in algebraic geometry, and more general elementary topoi are used in logic. The mathematical field that studies topoi is called topos theory. Grothendieck topos (topos in geometry) Since the introduction of sheaves into mathematics in the 1940s, a major theme has been to study a space by studying sheaves on a space. This idea was expounded by Alexander Grothendieck by introducing the notion of a "topos". The main utility of this notion is in the abundance of situations in mathematics where topological heuristics are very effective, but an honest topological space is lacking; it is sometimes possible to find a topos formalizing the heuristic. An important example of this programma ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Saunders Mac Lane
Saunders Mac Lane (August 4, 1909 – April 14, 2005), born Leslie Saunders MacLane, was an American mathematician who co-founded category theory with Samuel Eilenberg. Early life and education Mac Lane was born in Norwich, Connecticut, near where his family lived in Taftville, Connecticut, Taftville.. He was christened "Leslie Saunders MacLane", but "Leslie" fell into disuse because his parents, Donald MacLane and Winifred Saunders, came to dislike it. He began inserting a space into his surname because his first wife found it difficult to type the name without a space. He was the eldest of three brothers; one of his brothers, Gerald MacLane, also became a mathematics professor at Rice University and Purdue University. Another sister died as a baby. His father and grandfather were both ministers; his grandfather had been a Presbyterian, but was kicked out of the church for believing in evolution, and his father was a Congregational church, Congregationalist. His mother, Winifre ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
André Joyal
André Joyal (; born 1943) is a professor of mathematics at the Université du Québec à Montréal who works on category theory. He was a member of the School of Mathematics at the Institute for Advanced Study in 2013, where he was invited to join the ''Special Year on Univalent Foundations of Mathematics''. Research He discovered Kripke–Joyal semantics, the theory of combinatorial species and with Myles Tierney a generalization of the Galois theory of Alexander Grothendieck in the setup of locales. Most of his research is in some way related to category theory, higher category theory and their applications. He did some work on quasi-categories, after their invention by Michael Boardman and Rainer Vogt, in particular conjecturing and proving the existence of a Quillen model structure on the category of simplicial sets whose weak equivalences generalize both equivalence of categories and Kan equivalence of spaces, which is now known as Joyal model structure. He co-a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematical Logic
Mathematical logic is the study of Logic#Formal logic, formal logic within mathematics. Major subareas include model theory, proof theory, set theory, and recursion theory (also known as computability theory). Research in mathematical logic commonly addresses the mathematical properties of formal systems of logic such as their expressive or deductive power. However, it can also include uses of logic to characterize correct mathematical reasoning or to establish foundations of mathematics. Since its inception, mathematical logic has both contributed to and been motivated by the study of foundations of mathematics. This study began in the late 19th century with the development of axiomatic frameworks for geometry, arithmetic, and Mathematical analysis, analysis. In the early 20th century it was shaped by David Hilbert's Hilbert's program, program to prove the consistency of foundational theories. Results of Kurt Gödel, Gerhard Gentzen, and others provided partial resolution to th ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Differential Topology
In mathematics, differential topology is the field dealing with the topological properties and smooth properties of smooth manifolds. In this sense differential topology is distinct from the closely related field of differential geometry, which concerns the ''geometric'' properties of smooth manifolds, including notions of size, distance, and rigid shape. By comparison differential topology is concerned with coarser properties, such as the number of holes in a manifold, its homotopy type, or the structure of its diffeomorphism group. Because many of these coarser properties may be captured algebraically, differential topology has strong links to algebraic topology. The central goal of the field of differential topology is the classification of all smooth manifolds up to diffeomorphism. Since dimension is an invariant of smooth manifolds up to diffeomorphism type, this classification is often studied by classifying the ( connected) manifolds in each dimension separately: * In ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Algebraic Topology
Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariant (mathematics), invariants that classification theorem, classify topological spaces up to homeomorphism, though usually most classify up to Homotopy#Homotopy equivalence and null-homotopy, homotopy equivalence. Although algebraic topology primarily uses algebra to study topological problems, using topology to solve algebraic problems is sometimes also possible. Algebraic topology, for example, allows for a convenient proof that any subgroup of a free group is again a free group. Main branches Below are some of the main areas studied in algebraic topology: Homotopy groups In mathematics, homotopy groups are used in algebraic topology to classify topological spaces. The first and simplest homotopy group is the fundamental group, which records information about loops in a space. Intuitively, homotopy groups record information ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Category Theory
Category theory is a general theory of mathematical structures and their relations. It was introduced by Samuel Eilenberg and Saunders Mac Lane in the middle of the 20th century in their foundational work on algebraic topology. Category theory is used in most areas of mathematics. In particular, many constructions of new mathematical objects from previous ones that appear similarly in several contexts are conveniently expressed and unified in terms of categories. Examples include quotient space (other), quotient spaces, direct products, completion, and duality (mathematics), duality. Many areas of computer science also rely on category theory, such as functional programming and Semantics (computer science), semantics. A category (mathematics), category is formed by two sorts of mathematical object, objects: the object (category theory), objects of the category, and the morphisms, which relate two objects called the ''source'' and the ''target'' of the morphism. Metapho ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |