HOME





Hierarchy (mathematics)
In mathematics, a hierarchy is a set-theoretical object, consisting of a preorder defined on a set. This is often referred to as an ordered set, though that is an ambiguous term that many authors reserve for partially ordered sets or totally ordered sets. The term ''pre-ordered set'' is unambiguous, and is always synonymous with a mathematical hierarchy. The term ''hierarchy'' is used to stress a ''hierarchical'' relation among the elements. Sometimes, a set comes equipped with a natural hierarchical structure. For example, the set of natural numbers N is equipped with a natural pre-order structure, where n \le n' whenever we can find some other number m so that n + m = n'. That is, n' is bigger than n only because we can get to n' from n ''using'' m. This idea can be applied to any commutative monoid. On the other hand, the set of integers Z requires a more sophisticated argument for its hierarchical structure, since we can always solve the equation n + m = n' by writing m = (n' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Class (computer Programming)
In object-oriented programming, a class defines the shared aspects of objects created from the class. The capabilities of a class differ between programming languages, but generally the shared aspects consist of state ( variables) and behavior ( methods) that are each either associated with a particular object or with all objects of that class. Object state can differ between each instance of the class whereas the class state is shared by all of them. The object methods include access to the object state (via an implicit or explicit parameter that references the object) whereas class methods do not. If the language supports inheritance, a class can be defined based on another class with all of its state and behavior plus additional state and behavior that further specializes the class. The specialized class is a ''sub-class'', and the class it is based on is its ''superclass''. Attributes Object lifecycle As an instance of a class, an object is constructed from a class via '' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Tree (descriptive Set Theory)
In descriptive set theory, a tree on a set X is a collection of finite sequences of elements of X such that every prefix of a sequence in the collection also belongs to the collection. Definitions Trees The collection of all finite sequences of elements of a set X is denoted X^. With this notation, a tree is a nonempty subset T of X^, such that if \langle x_0,x_1,\ldots,x_\rangle is a sequence of length n in T, and if 0\le m and called the ''body'' of the tree T. A tree that has no branches is called '' wellfounded''; a tree with at least one branch is ''illfounded''. By Kőnig's lemma, a tree on a finite set with an infinite number of sequences must necessarily be illfounded. Terminal nodes A finite sequence that belongs to a tree T is called a terminal node if it is not a prefix of a longer sequence in T. Equivalently, \langle x_0,x_1,\ldots,x_\rangle \in T is terminal if there is no element x of X such that that \langle x_0,x_1,\ldots,x_,x\rangle \in T. A tree that does no ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Tree Network
A tree topology, or star-bus topology, is a hybrid network topology in which star networks are interconnected via bus networks. Tree networks are hierarchical, and each node can have an arbitrary number of child nodes. Regular tree networks A regular tree network's topology is characterized by two parameters: the branching, d, and the number of generations, G. The total number of the nodes, N, and the number of peripheral nodes N_p, are given by : N= \frac,\quad N_p=d^G Random tree networks Three parameters are crucial in determining the statistics of random tree networks, first, the branching probability, second the maximum number of allowed progenies at each branching point, and third the maximum number of generations, that a tree can attain. There are a lot of studies that address the large tree networks, however small tree networks are seldom studied. Tools to deal with networks A group at MIT has developed a set of functions for Matlab MATLAB (an abb ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Tree (graph Theory)
In graph theory, a tree is an undirected graph in which any two vertices are connected by path, or equivalently a connected acyclic undirected graph. A forest is an undirected graph in which any two vertices are connected by path, or equivalently an acyclic undirected graph, or equivalently a disjoint union of trees. A directed tree, oriented tree,See .See . polytree,See . or singly connected networkSee . is a directed acyclic graph (DAG) whose underlying undirected graph is a tree. A polyforest (or directed forest or oriented forest) is a directed acyclic graph whose underlying undirected graph is a forest. The various kinds of data structures referred to as trees in computer science have underlying graphs that are trees in graph theory, although such data structures are generally rooted trees. A rooted tree may be directed, called a directed rooted tree, either making all its edges point away from the root—in which case it is called an arborescence or out-tree� ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Tree (data Structure)
In computer science, a tree is a widely used abstract data type that represents a hierarchical tree structure with a set of connected nodes. Each node in the tree can be connected to many children (depending on the type of tree), but must be connected to exactly one parent, except for the ''root'' node, which has no parent (i.e., the root node as the top-most node in the tree hierarchy). These constraints mean there are no cycles or "loops" (no node can be its own ancestor), and also that each child can be treated like the root node of its own subtree, making recursion a useful technique for tree traversal. In contrast to linear data structures, many trees cannot be represented by relationships between neighboring nodes (parent and children nodes of a node under consideration, if they exist) in a single straight line (called edge or link between two adjacent nodes). Binary trees are a commonly used type, which constrain the number of children for each parent to at most two. Whe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Tree Structure
A tree structure, tree diagram, or tree model is a way of representing the hierarchical nature of a structure in a graphical form. It is named a "tree structure" because the classic representation resembles a tree, although the chart is generally upside down compared to a biological tree, with the "stem" at the top and the "leaves" at the bottom. A tree structure is conceptual, and appears in several forms. For a discussion of tree structures in specific fields, see Tree (data structure) for computer science; insofar as it relates to graph theory, see tree (graph theory) or tree (set theory). Other related articles are listed below. Terminology and properties The tree elements are called "nodes". The lines connecting elements are called "branches". Nodes without children are called leaf nodes, "end-nodes", or "leaves". Every finite tree structure has a member that has no superior. This member is called the "root" or root node. The root is the starting node. But the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Lattice (other)
Lattice may refer to: Arts and design * Latticework, an ornamental criss-crossed framework, an arrangement of crossing laths or other thin strips of material * Lattice (music), an organized grid model of pitch ratios * Lattice (pastry), an ornamental pattern of crossing strips of pastry Companies * Lattice Engines, a technology company specializing in business applications for marketing and sales * Lattice Group, a former British gas transmission business * Lattice Semiconductor, a US-based integrated circuit manufacturer Science, technology, and mathematics Mathematics * Lattice (group), a repeating arrangement of points ** Lattice (discrete subgroup), a discrete subgroup of a topological group whose quotient carries an invariant finite Borel measure ** Lattice (module), a module over a ring that is embedded in a vector space over a field ** Lattice graph, a graph that can be drawn within a repeating arrangement of points ** Lattice-based cryptography, encryption syst ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Nested Set Collection
A nested set collection or nested set family is a collection of sets that consists of chains of subsets forming a hierarchical structure, like Matryoshka doll, Russian dolls. It is used as reference concept in hierarchy, scientific hierarchy definitions, and many technical approaches, like the tree (data structure), tree in Data structure, computational data structures or nested set model of relational databases. Sometimes the concept is confused with a collection of sets with a hereditary property (like finiteness in a hereditarily finite set). Formal definition Some authors regard a nested set collection as a family of sets. Others prefer to classify it relation as an inclusion order. Let ''B'' be a empty set, non-empty set and C a collection of subsets of ''B''. Then C is a nested set collection if: * B \in \mathbf (and, for some authors, \empty \notin \mathbf) * \forall H,K \in \mathbf ~:~ H \cap K \neq \empty \implies H \subset K ~\lor~ K \subset H The first condition sta ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Order Theory
Order theory is a branch of mathematics that investigates the intuitive notion of order using binary relations. It provides a formal framework for describing statements such as "this is less than that" or "this precedes that". This article introduces the field and provides basic definitions. A list of order-theoretic terms can be found in the order theory glossary. Background and motivation Orders are everywhere in mathematics and related fields like computer science. The first order often discussed in primary school is the standard order on the natural numbers e.g. "2 is less than 3", "10 is greater than 5", or "Does Tom have fewer cookies than Sally?". This intuitive concept can be extended to orders on other sets of numbers, such as the integers and the reals. The idea of being greater than or less than another number is one of the basic intuitions of number systems in general (although one usually is also interested in the actual difference of two numbers, which is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Decision Problem
In computability theory and computational complexity theory, a decision problem is a computational problem that can be posed as a yes–no question on a set of input values. An example of a decision problem is deciding whether a given natural number is prime. Another example is the problem, "given two numbers ''x'' and ''y'', does ''x'' evenly divide ''y''?" A decision procedure for a decision problem is an algorithmic method that answers the yes-no question on all inputs, and a decision problem is called decidable if there is a decision procedure for it. For example, the decision problem "given two numbers ''x'' and ''y'', does ''x'' evenly divide ''y''?" is decidable since there is a decision procedure called long division that gives the steps for determining whether ''x'' evenly divides ''y'' and the correct answer, ''YES'' or ''NO'', accordingly. Some of the most important problems in mathematics are undecidable, e.g. the halting problem. The field of computational ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Time Hierarchy
In computational complexity theory, the time hierarchy theorems are important statements about time-bounded computation on Turing machines. Informally, these theorems say that given more time, a Turing machine can solve more problems. For example, there are problems that can be solved with ''n''2 time but not ''n'' time, where ''n'' is the input length. The time hierarchy theorem for deterministic multi-tape Turing machines was first proven by Richard E. Stearns and Juris Hartmanis in 1965. It was improved a year later when F. C. Hennie and Richard E. Stearns improved the efficiency of the universal Turing machine. Consequent to the theorem, for every deterministic time-bounded complexity class, there is a strictly larger time-bounded complexity class, and so the time-bounded hierarchy of complexity classes does not completely collapse. More precisely, the time hierarchy theorem for deterministic Turing machines states that for all time-constructible functions ''f''(''n''), :\mat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]