HOME



picture info

Hexadecagram
In mathematics, a hexadecagon (sometimes called a hexakaidecagon or 16-gon) is a sixteen-sided polygon. Regular hexadecagon A ''regular hexadecagon'' is a hexadecagon in which all angles are equal and all sides are congruent. Its Schläfli symbol is and can be constructed as a truncated octagon, t, and a twice-truncated square tt. A truncated hexadecagon, t, is a triacontadigon, . Construction As 16 = 24 (a power of two), a regular hexadecagon is constructible using compass and straightedge: this was already known to ancient Greek mathematicians. Measurements Each angle of a regular hexadecagon is 157.5 degrees, and the total angle measure of any hexadecagon is 2520 degrees. The area of a regular hexadecagon with edge length ''t'' is :\begin A = 4t^2 \cot \frac =& 4t^2 \left(1+\sqrt+\sqrt\right)\\ =& 4t^2 (\sqrt+1)(\sqrt+1) .\end Because the hexadecagon has a number of sides that is a power of two, its area can be computed in terms of the circumradius ''R'' by truncatin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

16-gon Rhombic Dissectionx
In mathematics, a hexadecagon (sometimes called a hexakaidecagon or 16-gon) is a sixteen-sided polygon. Regular hexadecagon A ''regular polygon, regular hexadecagon'' is a hexadecagon in which all angles are equal and all sides are congruent. Its Schläfli symbol is and can be constructed as a Truncation (geometry), truncated octagon, t, and a twice-truncated square tt. A truncated hexadecagon, t, is a triacontadigon, . Construction As 16 = 24 (a power of two), a regular hexadecagon is constructible polygon, constructible using compass and straightedge: this was already known to ancient Greek mathematicians. Measurements Each angle of a regular hexadecagon is 157.5 Degree (angle), degrees, and the total angle measure of any hexadecagon is 2520 degrees. The area of a regular hexadecagon with edge length ''t'' is :\begin A = 4t^2 \cot \frac =& 4t^2 \left(1+\sqrt+\sqrt\right)\\ =& 4t^2 (\sqrt+1)(\sqrt+1) .\end Because the hexadecagon has a number of sides that is a power of tw ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

16-gon Rhombic Dissection2
In mathematics, a hexadecagon (sometimes called a hexakaidecagon or 16-gon) is a sixteen-sided polygon. Regular hexadecagon A '' regular hexadecagon'' is a hexadecagon in which all angles are equal and all sides are congruent. Its Schläfli symbol is and can be constructed as a truncated octagon, t, and a twice-truncated square tt. A truncated hexadecagon, t, is a triacontadigon, . Construction As 16 = 24 (a power of two), a regular hexadecagon is constructible using compass and straightedge: this was already known to ancient Greek mathematicians. Measurements Each angle of a regular hexadecagon is 157.5 degrees, and the total angle measure of any hexadecagon is 2520 degrees. The area of a regular hexadecagon with edge length ''t'' is :\begin A = 4t^2 \cot \frac =& 4t^2 \left(1+\sqrt+\sqrt\right)\\ =& 4t^2 (\sqrt+1)(\sqrt+1) .\end Because the hexadecagon has a number of sides that is a power of two, its area can be computed in terms of the circumradius ''R'' by truncati ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Isogonal Figure
In geometry, a polytope (e.g. a polygon or polyhedron) or a Tessellation, tiling is isogonal or vertex-transitive if all its vertex (geometry), vertices are equivalent under the Symmetry, symmetries of the figure. This implies that each vertex is surrounded by the same kinds of face (geometry), face in the same or reverse order, and with the same Dihedral angle, angles between corresponding faces. Technically, one says that for any two vertices there exists a symmetry of the polytope Map (mathematics), mapping the first isometry, isometrically onto the second. Other ways of saying this are that the automorphism group, group of automorphisms of the polytope ''Group action#Remarkable properties of actions, acts transitively'' on its vertices, or that the vertices lie within a single ''symmetry orbit''. All vertices of a finite -dimensional isogonal figure exist on an n-sphere, -sphere. The term isogonal has long been used for polyhedra. Vertex-transitive is a synonym borrowed fro ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

8-cube
In geometry, an 8-cube is an eight-dimensional hypercube. It has 256 vertices, 1024 edges, 1792 square faces, 1792 cubic cells, 1120 tesseract 4-faces, 448 5-cube 5-faces, 112 6-cube 6-faces, and 16 7-cube 7-faces. It is represented by Schläfli symbol , being composed of 3 7-cubes around each 6-face. It is called an octeract, a portmanteau of tesseract (the ''4-cube'') and ''oct'' for eight (dimensions) in Greek. It can also be called a regular hexdeca-8-tope or hexadecazetton, being an 8-dimensional polytope constructed from 16 regular facets. It is a part of an infinite family of polytopes, called hypercubes. The dual of an 8-cube can be called an 8-orthoplex and is a part of the infinite family of cross-polytopes. Cartesian coordinates Cartesian coordinates for the vertices of an 8-cube centered at the origin and edge length 2 are : (±1,±1,±1,±1,±1,±1,±1,±1) while the interior of the same consists of all points (x0, x1, x2, x3, x4, x5, x6, x7) with ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Petrie Polygon
In geometry, a Petrie polygon for a regular polytope of dimensions is a skew polygon in which every consecutive sides (but no ) belongs to one of the facets. The Petrie polygon of a regular polygon is the regular polygon itself; that of a regular polyhedron is a skew polygon such that every two consecutive sides (but no three) belongs to one of the faces. Petrie polygons are named for mathematician John Flinders Petrie. For every regular polytope there exists an orthogonal projection onto a plane such that one Petrie polygon becomes a regular polygon with the remainder of the projection interior to it. The plane in question is the Coxeter plane of the symmetry group of the polygon, and the number of sides, , is the Coxeter number of the Coxeter group. These polygons and projected graphs are useful in visualizing symmetric structure of the higher-dimensional regular polytopes. Petrie polygons can be defined more generally for any embedded graph. They form the faces of ano ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Zonogon
In geometry, a zonogon is a centrally-symmetric, convex polygon. Equivalently, it is a convex polygon whose sides can be grouped into parallel pairs with equal lengths and opposite orientations, the two-dimensional analog of a zonohedron. Examples A regular polygon is a zonogon if and only if it has an even number of sides. Thus, the square, regular hexagon, and regular octagon are all zonogons. The four-sided zonogons are the square, the rectangles, the rhombi, and the parallelograms. Tiling and equidissection The four-sided and six-sided zonogons are parallelogons, able to tile the plane by translated copies of themselves, and all convex parallelogons have this form. Every 2n-sided zonogon can be tiled by \tbinom parallelograms. (For equilateral zonogons, a 2n-sided one can be tiled by \tbinom rhombi.) In this tiling, there is a parallelogram for each pair of slopes of sides in the 2n-sided zonogon. At least three of the zonogon's vertices must be vertices of only one of t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Coxeter
Harold Scott MacDonald "Donald" Coxeter (9 February 1907 – 31 March 2003) was a British-Canadian geometer and mathematician. He is regarded as one of the greatest geometers of the 20th century. Coxeter was born in England and educated at the University of Cambridge, with student visits to Princeton University. He worked for 60 years at the University of Toronto in Canada, from 1936 until his retirement in 1996, becoming a full professor there in 1948. His many honours included membership in the Royal Society of Canada, the Royal Society, and the Order of Canada. He was an author of 12 books, including ''The Fifty-Nine Icosahedra'' (1938) and ''Regular Polytopes'' (1947). Many concepts in geometry and group theory are named after him, including the Coxeter graph, Coxeter groups, Coxeter's loxodromic sequence of tangent circles, Coxeter–Dynkin diagrams, and the Todd–Coxeter algorithm. Biography Coxeter was born in Kensington, England, to Harold Samuel Coxeter an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Isotoxal 20-gon Rhombic Dissection-size2
In geometry, a polytope (for example, a polygon or a polyhedron) or a tiling is isotoxal () or edge-transitive if its symmetries act transitively on its edges. Informally, this means that there is only one type of edge to the object: given two edges, there is a translation, rotation, and/or reflection that will move one edge to the other while leaving the region occupied by the object unchanged. Isotoxal polygons An isotoxal polygon is an even-sided i.e. equilateral polygon, but not all equilateral polygons are isotoxal. The duals of isotoxal polygons are isogonal polygons. Isotoxal 4n-gons are centrally symmetric, thus are also zonogons. In general, a (non-regular) isotoxal 2n-gon has \mathrm_n, (^*nn) dihedral symmetry. For example, a (non-square) rhombus is an isotoxal "2×2-gon" (quadrilateral) with \mathrm_2, (^*22) symmetry. All regular -gons (also with odd n) are isotoxal, having double the minimum symmetry order: a regular n-gon has \mathrm_n, (^*nn) dihedral symme ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]