HOME





Haken Manifold
In mathematics, a Haken manifold is a compact, P²-irreducible 3-manifold that is sufficiently large, meaning that it contains a properly embedded two-sided incompressible surface. Sometimes one considers only orientable Haken manifolds, in which case a Haken manifold is a compact, orientable, irreducible 3-manifold that contains an orientable, incompressible surface. A 3-manifold finitely covered by a Haken manifold is said to be virtually Haken. The Virtually Haken conjecture asserts that every compact, irreducible 3-manifold with infinite fundamental group is virtually Haken. This conjecture was proven by Ian Agol. Haken manifolds were introduced by . proved that Haken manifolds have a hierarchy, where they can be split up into 3-balls along incompressible surfaces. Haken also showed that there was a finite procedure to find an incompressible surface if the 3-manifold had one. gave an algorithm to determine if a 3-manifold was Haken. Normal surfaces are ubiquitous ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hyperbolization Theorem
In geometry, Thurston's geometrization theorem or hyperbolization theorem implies that closed atoroidal Haken manifolds are hyperbolic, and in particular satisfy the Thurston conjecture. Statement One form of the hyperbolization theorem states: If ''M'' is a compact irreducible atoroidal Haken manifold whose boundary has zero Euler characteristic, then the interior of ''M'' has a complete hyperbolic structure of finite volume. The Mostow rigidity theorem implies that if a manifold of dimension at least 3 has a hyperbolic structure of finite volume, then it is essentially unique. The conditions that the manifold ''M'' should be irreducible and atoroidal are necessary, as hyperbolic manifolds have these properties. However the condition that the manifold be Haken is unnecessarily strong. Thurston's hyperbolization conjecture states that a closed irreducible atoroidal 3-manifold with infinite fundamental group is hyperbolic, and this follows from Perelman's proof of the Thurst ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Princeton University Press
Princeton University Press is an independent publisher with close connections to Princeton University. Its mission is to disseminate scholarship within academia and society at large. The press was founded by Whitney Darrow, with the financial support of Charles Scribner, as a printing press to serve the Princeton community in 1905. Its distinctive building was constructed in 1911 on William Street in Princeton. Its first book was a new 1912 edition of John Witherspoon's ''Lectures on Moral Philosophy.'' History Princeton University Press was founded in 1905 by a recent Princeton graduate, Whitney Darrow, with financial support from another Princetonian, Charles Scribner II. Darrow and Scribner purchased the equipment and assumed the operations of two already existing local publishers, that of the ''Princeton Alumni Weekly'' and the Princeton Press. The new press printed both local newspapers, university documents, '' The Daily Princetonian'', and later added book publishing ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mathematische Zeitschrift
''Mathematische Zeitschrift'' ( German for ''Mathematical Journal'') is a mathematical journal for pure and applied mathematics published by Springer Verlag. History The journal was founded in 1917, with its first issue appearing in 1918. It was initially edited by Leon Lichtenstein together with Konrad Knopp, Erhard Schmidt, and Issai Schur. Because Lichtenstein was Jewish, he was forced to step down as editor in 1933 under the Nazi rule of Germany; he fled to Poland and died soon after. The editorship was offered to Helmut Hasse Helmut Hasse (; 25 August 1898 – 26 December 1979) was a German mathematician working in algebraic number theory, known for fundamental contributions to class field theory, the application of ''p''-adic numbers to local class field theory and ..., but he refused, Translated by Bärbel Deninger from the 1982 German original. and Konrad Knopp took it over. Other past editors include Erich Kamke, Friedrich Karl Schmidt, Rolf Nevanlinna, Hel ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Acta Mathematica
''Acta Mathematica'' is a peer-reviewed open-access scientific journal covering research in all fields of mathematics. According to Cédric Villani, this journal is "considered by many to be the most prestigious of all mathematical research journals".. According to the ''Journal Citation Reports'', the journal has a 2020 impact factor of 4.273, ranking it 5th out of 330 journals in the category "Mathematics". Publication history The journal was established by Gösta Mittag-Leffler in 1882 and is published by Institut Mittag-Leffler, a research institute for mathematics belonging to the Royal Swedish Academy of Sciences. The journal was printed and distributed by Springer from 2006 to 2016. Since 2017, Acta Mathematica has been published electronically and in print by International Press. Its electronic version is open access without publishing fees. Poincaré episode The journal's "most famous episode" (according to Villani) concerns Henri Poincaré, who won a prize offered in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Manifold Decomposition
In topology, a branch of mathematics, a manifold ''M'' may be decomposed or split by writing ''M'' as a combination of smaller pieces. When doing so, one must specify both what those pieces are and how they are put together to form ''M''. Manifold decomposition works in two directions: one can start with the smaller pieces and build up a manifold, or start with a large manifold and decompose it. The latter has proven a very useful way to study manifolds: without tools like decomposition, it is sometimes very hard to understand a manifold. In particular, it has been useful in attempts to classify 3-manifolds and also in proving the higher-dimensional Poincaré conjecture. The table below is a summary of the various manifold-decomposition techniques. The column labeled "''M''" indicates what kind of manifold can be decomposed; the column labeled "How it is decomposed" indicates how, starting with a manifold, one can decompose it into smaller pieces; the column labeled "The pieces" in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Seifert Fiber Space
A Seifert fiber space is a 3-manifold together with a decomposition as a disjoint union of circles. In other words, it is a S^1-bundle ( circle bundle) over a 2-dimensional orbifold. Many 3-manifolds are Seifert fiber spaces, and they account for all compact oriented manifolds in 6 of the 8 Thurston geometries of the geometrization conjecture. Definition A Seifert manifold is a closed 3-manifold together with a decomposition into a disjoint union of circles (called fibers) such that each fiber has a tubular neighborhood that forms a standard fibered torus. A standard fibered torus corresponding to a pair of coprime integers (a,b) with a>0 is the surface bundle of the automorphism of a disk given by rotation by an angle of 2\pi b/a (with the natural fibering by circles). If a=1 the middle fiber is called ordinary, while if a>1 the middle fiber is called exceptional. A compact Seifert fiber space has only a finite number of exceptional fibers. The set of fibers forms a 2-dimensi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Knot Complement
In mathematics, the knot complement of a tame knot ''K'' is the space where the knot is not. If a knot is embedded in the 3-sphere, then the complement is the 3-sphere minus the space near the knot. To make this precise, suppose that ''K'' is a knot in a three-manifold ''M'' (most often, ''M'' is the 3-sphere). Let ''N'' be a tubular neighborhood of ''K''; so ''N'' is a solid torus. The knot complement is then the complement of ''N'', :X_K = M - \mbox(N). The knot complement ''XK'' is a compact 3-manifold; the boundary of ''XK'' and the boundary of the neighborhood ''N'' are homeomorphic to a two-torus In geometry, a torus (: tori or toruses) is a surface of revolution generated by revolving a circle in three-dimensional space one full revolution about an axis that is coplanarity, coplanar with the circle. The main types of toruses inclu .... Sometimes the ambient manifold ''M'' is understood to be the 3-sphere. Context is needed to determine the usage. T ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Surface Bundles Over The Circle
A surface, as the term is most generally used, is the outermost or uppermost layer of a physical object or space. It is the portion or region of the object that can first be perceived by an observer using the senses of sight and touch, and is the portion with which other materials first interact. The surface of an object is more than "a mere geometric solid", but is "filled with, spread over by, or suffused with perceivable qualities such as color and warmth". The concept of surface has been abstracted and formalized in mathematics, specifically in geometry. Depending on the properties on which the emphasis is given, there are several inequivalent such formalizations that are all called ''surface'', sometimes with a qualifier such as algebraic surface, smooth surface or fractal surface. The concept of surface and its mathematical abstractions are both widely used in physics, engineering, computer graphics, and many other disciplines, primarily in representing the surfaces of ph ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Betti Number
In algebraic topology, the Betti numbers are used to distinguish topological spaces based on the connectivity of ''n''-dimensional simplicial complexes. For the most reasonable finite-dimensional spaces (such as compact manifolds, finite simplicial complexes or CW complexes), the sequence of Betti numbers is 0 from some point onward (Betti numbers vanish above the dimension of a space), and they are all finite. The ''n''th Betti number represents the rank of the ''n''th homology group, denoted ''H''''n'', which tells us the maximum number of cuts that can be made before separating a surface into two pieces or 0-cycles, 1-cycles, etc. For example, if H_n(X) \cong 0 then b_n(X) = 0, if H_n(X) \cong \mathbb then b_n(X) = 1, if H_n(X) \cong \mathbb \oplus \mathbb then b_n(X) = 2, if H_n(X) \cong \mathbb \oplus \mathbb\oplus \mathbb then b_n(X) = 3, etc. Note that only the ranks of infinite groups are considered, so for example if H_n(X) \cong \mathbb^k \oplus \mathbb/(2), where \mat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Mostow Rigidity
In mathematics, Mostow's rigidity theorem, or strong rigidity theorem, or Mostow–Prasad rigidity theorem, essentially states that the geometry of a complete, finite-volume hyperbolic manifold of dimension greater than two is determined by the fundamental group and hence unique. The theorem was proven for closed manifolds by and extended to finite volume manifolds by in 3 dimensions, and by in all dimensions at least 3. gave an alternate proof using the Gromov norm. gave the simplest available proof. While the theorem shows that the deformation space of (complete) hyperbolic structures on a finite volume hyperbolic n-manifold (for n >2) is a point, for a hyperbolic surface of genus g>1 there is a moduli space of dimension 6g-6 that parameterizes all metrics of constant curvature (up to diffeomorphism), a fact essential for Teichmüller theory. There is also a rich theory of deformation spaces of hyperbolic structures on ''infinite'' volume manifolds in three dimensions. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]