HOME





HPCG Benchmark
The High Performance Conjugate Gradients Benchmark (HPCG benchmark) is a supercomputing benchmark (computing), benchmark test proposed by Michael Heroux from Sandia National Laboratories, and Jack Dongarra and Piotr Luszczek from the University of Tennessee. Benchmark It is intended to model the data access patterns of real-world application software, applications such as sparse matrix calculations, thus testing the effect of limitations of the memory subsystem and internal interconnect (computing), interconnect of the supercomputer on its computing performance. Because it is internally I/O bound (the data for the benchmark resides in main memory as it is too large for processor caches), HPCG testing generally achieves only a tiny fraction of the peak FLOPS the computer could theoretically deliver. HPCG is intended to complement benchmarks such as the LINPACK benchmarks that put relatively little stress on the internal interconnect. The source of the HPCG benchmark is available on ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Supercomputing
A supercomputer is a type of computer with a high level of performance as compared to a general-purpose computer. The performance of a supercomputer is commonly measured in floating-point operations per second (FLOPS) instead of million instructions per second (MIPS). Since 2022, supercomputers have existed which can perform over 1018 FLOPS, so called Exascale computing, exascale supercomputers. For comparison, a desktop computer has performance in the range of hundreds of gigaFLOPS (1011) to tens of teraFLOPS (1013). Since November 2017, all of the TOP500, world's fastest 500 supercomputers run on Linux-based operating systems. Additional research is being conducted in the United States, the European Union, Taiwan, Japan, and China to build faster, more powerful and technologically superior exascale supercomputers. Supercomputers play an important role in the field of computational science, and are used for a wide range of computationally intensive tasks in various fields, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

GitHub
GitHub () is a Proprietary software, proprietary developer platform that allows developers to create, store, manage, and share their code. It uses Git to provide distributed version control and GitHub itself provides access control, bug tracking system, bug tracking, software feature requests, task management, continuous integration, and wikis for every project. Headquartered in California, GitHub, Inc. has been a subsidiary of Microsoft since 2018. It is commonly used to host open source software development projects. GitHub reported having over 100 million developers and more than 420 million Repository (version control), repositories, including at least 28 million public repositories. It is the world's largest source code host Over five billion developer contributions were made to more than 500 million open source projects in 2024. About Founding The development of the GitHub platform began on October 19, 2005. The site was launched in April 2008 by Tom ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Traversed Edges Per Second
The number of traversed edges per second (TEPS) that can be performed by a supercomputer cluster is a measure of both the communications capabilities and computational power of the machine. This is in contrast to the more standard metric of floating-point operations per second (FLOPS), which does not give any weight to the communication capabilities of the machine. The term first entered usage in 2010 with the advent of petascale computing, and has since been measured for many of the world's largest supercomputers. In this context, an edge is a connection between two vertices on a graph, and the traversal is the ability of the machine to communicate data between these two points. The standardized benchmark associated with Graph500, as of September, 2011, calls for executing graph generation and search algorithms on graphs as large as 1.1 Petabyte. The ability of an application to utilize a supercomputer cluster effectively depends not only on the raw speed of each processor, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Preconditioned Conjugate Gradient Method
In mathematics, the conjugate gradient method is an algorithm for the numerical solution of particular systems of linear equations, namely those whose matrix is positive-semidefinite. The conjugate gradient method is often implemented as an iterative algorithm, applicable to sparse systems that are too large to be handled by a direct implementation or other direct methods such as the Cholesky decomposition. Large sparse systems often arise when numerically solving partial differential equations or optimization problems. The conjugate gradient method can also be used to solve unconstrained optimization problems such as energy minimization. It is commonly attributed to Magnus Hestenes and Eduard Stiefel, who programmed it on the Z4, and extensively researched it. The biconjugate gradient method provides a generalization to non-symmetric matrices. Various nonlinear conjugate gradient methods seek minima of nonlinear optimization problems. Description of the problem addr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Memory Access Pattern
In computing, a memory access pattern or IO access pattern is the pattern with which a system or program reads and writes memory on secondary storage. These patterns differ in the level of locality of reference and drastically affect cache performance, and also have implications for the approach to parallelism and distribution of workload in shared memory systems. Further, cache coherency issues can affect multiprocessor performance, which means that certain memory access patterns place a ceiling on parallelism (which manycore approaches seek to break). Computer memory is usually described as " random access", but traversals by software will still exhibit patterns that can be exploited for efficiency. Various tools exist to help system designers and programmers understand, analyse and improve the memory access pattern, including VTune and Vectorization Advisor, including tools to address GPU memory access patterns. Memory access patterns also have implications for securi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Graph500
The Graph500 is a rating of supercomputer systems, focused on data-intensive loads. The project was announced on International Supercomputing Conference in June 2010. The first list was published at the ACM/IEEE Supercomputing Conference in November 2010. New versions of the list are published twice a year. The main performance metric used to rank the supercomputers is GTEPS (giga- traversed edges per second). Richard Murphy from Sandia National Laboratories, says that "The Graph500's goal is to promote awareness of complex data problems", instead of focusing on computer benchmarks like HPL (High Performance Linpack), which TOP500 is based on. Despite its name, there were several hundreds of systems in the rating, growing up to 174 in June 2014. The algorithm and implementation that won the championship is published in the paper titled "Extreme scale breadth-first search on supercomputers". There is also list Green Graph 500, which uses same performance metric, but sorts li ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


LUMI
LUMI (Large Unified Modern Infrastructure) is a petascale supercomputer located at the CSC data center in Kajaani, Finland. In January 2023, the computer became the fastest supercomputer in Europe. The completed system consists of 362,496 cores, capable of executing more than 375 petaflops, with a theoretical peak performance of more than 550 petaflops, which places it among the most powerful computers in the world. The November 2022 TOP500 ranks LUMI at number five, with a measured performance of 309.1 PFLOPS. Architecture The system is being supplied by Hewlett Packard Enterprise (HPE), providing an HPE Cray EX supercomputer with next generation 64-core AMD EPYC CPUs and AMD Radeon Instinct GPUs. LUMI is a GPU based system, and the majority of its computing power comes from its GPU cores, an architecture which was chosen primarily for its cost/performance advantage. The system is equipped with 1.75 petabytes of RAM, and storage includes a 7-petabyte partition of fl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Summit (supercomputer)
Summit or OLCF-4 was a supercomputer developed by IBM for use at Oak Ridge Leadership Computing Facility (OLCF), a facility at the Oak Ridge National Laboratory, United States of America. It held the number 1 position on the TOP500 list from June 2018 to June 2020. As of June 2024, its LINPACK benchmark was clocked at 148.6 petaFLOPS. Summit was decommissioned on November 15, 2024. As of November 2019, the supercomputer had ranked as the 5th most energy efficient in the world with a measured power efficiency of 14.668 gigaFLOPS/watt. Summit was the first supercomputer to reach exaflop (a quintillion operations per second) speed, on a non-standard metric, achieving 1.88 exaflops during a genomic analysis and is expected to reach 3.3 exaflops using mixed-precision calculations. History The United States Department of Energy awarded a $325 million contract in November 2014 to IBM, Nvidia and Mellanox. The effort resulted in construction of Summit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fugaku (supercomputer)
Fugaku is a petascale supercomputer at the Riken Center for Computational Science in Kobe, Japan. It started development in 2014 as the successor to the K computer and made its debut in 2020. It is named after an alternative name for Mount Fuji. It became the fastest supercomputer in the world in the June 2020 TOP500 list as well as becoming the first ARM architecture-based computer to achieve this. At this time it also achieved 1.42 exaFLOPS using the mixed fp16/fp64 precision HPL-AI benchmark. It started regular operations in 2021. Fugaku was superseded as the fastest supercomputer in the world by Frontier (supercomputer), Frontier in May 2022. Hardware The supercomputer is built with the Fujitsu A64FX microprocessor. This CPU is based on the ARM architecture, ARM AArch64#ARMv8.2-A, version 8.2A processor architecture, and adopts the Scalable Vector Extensions for supercomputers. Fugaku was aimed to be about 100 times more powerful than the K computer (i.e. a performanc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Frontier (supercomputer)
Hewlett Packard Enterprise Frontier, or OLCF-5, is the world's first exascale supercomputer. It is hosted at the Oak Ridge Leadership Computing Facility (OLCF) in Tennessee, United States, and became operational in 2022. , Frontier is the second fastest supercomputer in the world. It is based on the Cray EX and is the successor to Summit (OLCF-4). Frontier achieved an Rmax of 1.102 exaFLOPS, which is 1.102 quintillion floating-point operations per second, using AMD CPUs and GPUs. Measured at 62.86 gigaflops/watt, the smaller Frontier TDS (test and development system) topped the Green500 list for most efficient supercomputer until it was dethroned in efficiency by the Flatiron Institute's Henri supercomputer in November 2022. Frontier was superseded as the fastest supercomputer in the world by El Capitan in November 2024. Design Frontier uses 9,472 AMD Epyc 7713 "Trento" 64 core 2 GHz CPUs (606,208 cores) and 37,888 Instinct MI250X GPUs (8,335,360 cores). They ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Fugaku (supercomputer)
Fugaku is a petascale supercomputer at the Riken Center for Computational Science in Kobe, Japan. It started development in 2014 as the successor to the K computer and made its debut in 2020. It is named after an alternative name for Mount Fuji. It became the fastest supercomputer in the world in the June 2020 TOP500 list as well as becoming the first ARM architecture-based computer to achieve this. At this time it also achieved 1.42 exaFLOPS using the mixed fp16/fp64 precision HPL-AI benchmark. It started regular operations in 2021. Fugaku was superseded as the fastest supercomputer in the world by Frontier in May 2022. Hardware The supercomputer is built with the Fujitsu A64FX microprocessor. This CPU is based on the ARM version 8.2A processor architecture, and adopts the Scalable Vector Extensions for supercomputers. Fugaku was aimed to be about 100 times more powerful than the K computer (i.e. a performance target of 1 exaFLOPS). The initial (June 2020) conf ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


LINPACK Benchmarks
The LINPACK benchmarks are a measure of a system's floating-point computing power. Introduced by Jack Dongarra, they measure how fast a computer solves a dense ''n'' × ''n'' system of linear equations ''Ax'' = ''b'', which is a common task in engineering. The latest version of these benchmarks is used to build the TOP500 list, ranking the world's most powerful supercomputers. The aim is to approximate how fast a computer will perform when solving real problems. It is a simplification, since no single computational task can reflect the overall performance of a computer system. Nevertheless, the LINPACK benchmark performance can provide a good correction over the peak performance provided by the manufacturer. The peak performance is the maximal theoretical performance a computer can achieve, calculated as the machine's frequency, in cycles per second, times the number of operations per cycle it can perform. The actual performance will always be lower than the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]