HOME





Gerbe
In mathematics, a gerbe (; ) is a construct in homological algebra and topology. Gerbes were introduced by Jean Giraud following ideas of Alexandre Grothendieck as a tool for non-commutative cohomology in degree 2. They can be seen as an analogue of fibre bundles where the fibre is the classifying stack of a group. Gerbes provide a convenient, if highly abstract, language for dealing with many types of deformation questions especially in modern algebraic geometry. In addition, special cases of gerbes have been used more recently in differential topology and differential geometry to give alternative descriptions to certain cohomology classes and additional structures attached to them. "Gerbe" is a French (and archaic English) word that literally means wheat sheaf. Definitions Gerbes on a topological space A gerbe on a topological space S is a stack \mathcal of groupoids over S that is ''locally non-empty'' (each point p \in S has an open neighbourhood U_p over which the s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Stack (mathematics)
In mathematics a stack or 2-sheaf is, roughly speaking, a sheaf (mathematics), sheaf that takes values in category (mathematics), categories rather than sets. Stacks are used to formalise some of the main constructions of descent theory, and to construct fine moduli stacks when fine moduli spaces do not exist. Descent theory is concerned with generalisations of situations where isomorphism, isomorphic, compatible geometrical objects (such as vector bundles on topological spaces) can be "glued together" within a restriction of the topological basis. In a more general set-up the restrictions are replaced with Pullback (category theory), pullbacks; fibred category, fibred categories then make a good framework to discuss the possibility of such gluing. The intuitive meaning of a stack is that it is a fibred category such that "all possible gluings work". The specification of gluings requires a definition of coverings with regard to which the gluings can be considered. It turns out that ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Jean Giraud (mathematician)
Jean Giraud (; 2 February 1936 – 27 or 28 March 2007)
, Philippe Gillet, ''ENS Info'' 70, April 2007.
was a French mathematician, a student of . His research focused on non-abelian and the theory of . In particular, he authored the book ''Cohomologie non-abélienne'' (Springer, 1971) and proved the theorem that bears his name, which gives a characterization of a
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Groupoid
In mathematics, especially in category theory and homotopy theory, a groupoid (less often Brandt groupoid or virtual group) generalises the notion of group in several equivalent ways. A groupoid can be seen as a: * '' Group'' with a partial function replacing the binary operation; * '' Category'' in which every morphism is invertible. A category of this sort can be viewed as augmented with a unary operation on the morphisms, called ''inverse'' by analogy with group theory. A groupoid where there is only one object is a usual group. In the presence of dependent typing, a category in general can be viewed as a typed monoid, and similarly, a groupoid can be viewed as simply a typed group. The morphisms take one from one object to another, and form a dependent family of types, thus morphisms might be typed , , say. Composition is then a total function: , so that . Special cases include: * '' Setoids'': sets that come with an equivalence relation, * '' G-sets'': sets equippe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algebraic Variety
Algebraic varieties are the central objects of study in algebraic geometry, a sub-field of mathematics. Classically, an algebraic variety is defined as the solution set, set of solutions of a system of polynomial equations over the real number, real or complex numbers. Modern definitions generalize this concept in several different ways, while attempting to preserve the geometric intuition behind the original definition. Conventions regarding the definition of an algebraic variety differ slightly. For example, some definitions require an algebraic variety to be Irreducible component, irreducible, which means that it is not the Union (set theory), union of two smaller Set (mathematics), sets that are Closed set, closed in the Zariski topology. Under this definition, non-irreducible algebraic varieties are called algebraic sets. Other conventions do not require irreducibility. The fundamental theorem of algebra establishes a link between algebra and geometry by showing that a mon ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




C*-algebra
In mathematics, specifically in functional analysis, a C∗-algebra (pronounced "C-star") is a Banach algebra together with an involution satisfying the properties of the adjoint. A particular case is that of a complex algebra ''A'' of continuous linear operators on a complex Hilbert space with two additional properties: * ''A'' is a topologically closed set in the norm topology of operators. * ''A'' is closed under the operation of taking adjoints of operators. Another important class of non-Hilbert C*-algebras includes the algebra C_0(X) of complex-valued continuous functions on ''X'' that vanish at infinity, where ''X'' is a locally compact Hausdorff space. C*-algebras were first considered primarily for their use in quantum mechanics to model algebras of physical observables. This line of research began with Werner Heisenberg's matrix mechanics and in a more mathematically developed form with Pascual Jordan around 1933. Subsequently, John von Neumann attempted to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Homotopy Fiber Square
In topology, two continuous functions from one topological space to another are called homotopic (from and ) if one can be "continuously deformed" into the other, such a deformation being called a homotopy ( ; ) between the two functions. A notable use of homotopy is the definition of homotopy groups and cohomotopy groups, important invariants in algebraic topology. In practice, there are technical difficulties in using homotopies with certain spaces. Algebraic topologists work with compactly generated spaces, CW complexes, or spectra. Formal definition Formally, a homotopy between two continuous functions ''f'' and ''g'' from a topological space ''X'' to a topological space ''Y'' is defined to be a continuous function H: X \times ,1\to Y from the product of the space ''X'' with the unit interval , 1to ''Y'' such that H(x,0) = f(x) and H(x,1) = g(x) for all x \in X. If we think of the second parameter of ''H'' as time then ''H'' describes a ''continuous def ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hilbert Space
In mathematics, a Hilbert space is a real number, real or complex number, complex inner product space that is also a complete metric space with respect to the metric induced by the inner product. It generalizes the notion of Euclidean space. The inner product allows lengths and angles to be defined. Furthermore, Complete metric space, completeness means that there are enough limit (mathematics), limits in the space to allow the techniques of calculus to be used. A Hilbert space is a special case of a Banach space. Hilbert spaces were studied beginning in the first decade of the 20th century by David Hilbert, Erhard Schmidt, and Frigyes Riesz. They are indispensable tools in the theories of partial differential equations, mathematical formulation of quantum mechanics, quantum mechanics, Fourier analysis (which includes applications to signal processing and heat transfer), and ergodic theory (which forms the mathematical underpinning of thermodynamics). John von Neumann coined the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Separable Space
In mathematics, a topological space is called separable if it contains a countable, dense subset; that is, there exists a sequence ( x_n )_^ of elements of the space such that every nonempty open subset of the space contains at least one element of the sequence. Like the other axioms of countability, separability is a "limitation on size", not necessarily in terms of cardinality (though, in the presence of the Hausdorff axiom, this does turn out to be the case; see below) but in a more subtle topological sense. In particular, every continuous function on a separable space whose image is a subset of a Hausdorff space is determined by its values on the countable dense subset. Contrast separability with the related notion of second countability, which is in general stronger but equivalent on the class of metrizable spaces. First examples Any topological space that is itself finite or countably infinite is separable, for the whole space is a countable dense subset of itself. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Singular Homology
In algebraic topology, singular homology refers to the study of a certain set of algebraic invariants of a topological space X, the so-called homology groups H_n(X). Intuitively, singular homology counts, for each dimension n, the n-dimensional holes of a space. Singular homology is a particular example of a homology theory, which has now grown to be a rather broad collection of theories. Of the various theories, it is perhaps one of the simpler ones to understand, being built on fairly concrete constructions (see also the related theory simplicial homology). In brief, singular homology is constructed by taking maps of the simplex, standard -simplex to a topological space, and composing them into Free abelian group#Integer functions and formal sums, formal sums, called singular chains. The boundary operation – mapping each n-dimensional simplex to its (n-1)-dimensional boundary operator, boundary – induces the singular chain complex. The singular homology is then ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Eilenberg–MacLane Space
In mathematics, specifically algebraic topology, an Eilenberg–MacLane spaceSaunders Mac Lane originally spelt his name "MacLane" (without a space), and co-published the papers establishing the notion of Eilenberg–MacLane spaces under this name. (See e.g. ) In this context it is therefore conventional to write the name without a space. is a topological space with a single nontrivial homotopy group. Let ''G'' be a group and ''n'' a positive integer. A connected topological space ''X'' is called an Eilenberg–MacLane space of type K(G,n), if it has ''n''-th homotopy group \pi_n(X) isomorphic to ''G'' and all other homotopy groups trivial. Assuming that ''G'' is abelian in the case that n > 1, Eilenberg–MacLane spaces of type K(G,n) always exist, and are all weak homotopy equivalent. Thus, one may consider K(G,n) as referring to a weak homotopy equivalence class of spaces. It is common to refer to any representative as "a K(G,n)" or as "a model of K(G,n)". Moreover, it is comm ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Isomorphism Class
In mathematics, an isomorphism is a structure-preserving mapping or morphism between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between them. The word is derived . The interest in isomorphisms lies in the fact that two isomorphic objects have the same properties (excluding further information such as additional structure or names of objects). Thus isomorphic structures cannot be distinguished from the point of view of structure only, and may often be identified. In mathematical jargon, one says that two objects are the same up to an isomorphism. A common example where isomorphic structures cannot be identified is when the structures are substructures of a larger one. For example, all subspaces of dimension one of a vector space are isomorphic and cannot be identified. An automorphism is an isomorphism from a structure to itself. An isomorphism between two structures is a cano ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Higher Gerbe
Higher may refer to: Music * The Higher, a 2002–2012 American pop rock band Albums * ''Higher'' (Ala Boratyn album) or the title song, 2007 * ''Higher'' (Chris Stapleton album) or the title song, 2023 * ''Higher'' (Ezio album) or the title song, 2000 * ''Higher'' (Harem Scarem album) or the title song, 2003 * ''Higher'' (The Horrors album), 2012 * ''Higher'' (Life On Planet 9 album) or the title song, 2017 * ''Higher'' (Michael Bublé album) or the title song, 2022 * ''Higher'' (The Overtones album) or the title song, 2012 * ''Higher'' (Regina Belle album) or the title song, 2012 * ''Higher'' (Roch Voisine album) or the title song, 2002 * ''Higher'' (Treponem Pal album), 1997 * ''Higher'', by Abundant Life Ministries, 2000 * ''Higher'', by ReinXeed, 2009 * ''Higher'', by Russell Robertson, 2008 * ''Higher!'', by Sly and the Family Stone, 2013 * ''Higher'', a mixtape by Remy Banks, 2015 Songs * "Higher" Budjerah song), 2021 * "Higher" (Burna Boy song), 2024 * "Hi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]