Gentzen
Gerhard Karl Erich Gentzen (24 November 1909 – 4 August 1945) was a German mathematician and logician. He made major contributions to the foundations of mathematics, proof theory, especially on natural deduction and sequent calculus. He died of starvation in a Czech prison camp in Prague in 1945. Life and career Gentzen was a student of Paul Bernays at the University of Göttingen. Bernays was fired as "non-Aryan" in April 1933 and therefore Hermann Weyl formally acted as his supervisor. Gentzen joined the Sturmabteilung in November 1933, although he was by no means compelled to do so. Nevertheless, he kept in contact with Bernays until the beginning of the Second World War. In 1935, he corresponded with Abraham Fraenkel in Jerusalem and was implicated by the Nazi teachers' union as one who "keeps contacts to the Chosen People." In 1935 and 1936, Hermann Weyl, head of the Göttingen mathematics department in 1933 until his resignation under Nazi pressure, made strong efforts to ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Sequent Calculus
In mathematical logic, sequent calculus is a style of formal logical argumentation in which every line of a proof is a conditional tautology (called a sequent by Gerhard Gentzen) instead of an unconditional tautology. Each conditional tautology is inferred from other conditional tautologies on earlier lines in a formal argument according to rules and procedures of inference, giving a better approximation to the natural style of deduction used by mathematicians than David Hilbert's earlier style of formal logic, in which every line was an unconditional tautology. More subtle distinctions may exist; for example, propositions may implicitly depend upon non-logical axioms. In that case, sequents signify conditional theorems of a first-order theory rather than conditional tautologies. Sequent calculus is one of several extant styles of proof calculus for expressing line-by-line logical arguments. * Hilbert style. Every line is an unconditional tautology (or theorem). * Gentzen s ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Natural Deduction
In logic and proof theory, natural deduction is a kind of proof calculus in which logical reasoning is expressed by inference rules closely related to the "natural" way of reasoning. This contrasts with Hilbert-style systems, which instead use axioms as much as possible to express the logical laws of deductive reasoning. History Natural deduction grew out of a context of dissatisfaction with the axiomatizations of deductive reasoning common to the systems of Hilbert, Frege, and Russell (see, e.g., Hilbert system). Such axiomatizations were most famously used by Russell and Whitehead in their mathematical treatise ''Principia Mathematica''. Spurred on by a series of seminars in Poland in 1926 by Łukasiewicz that advocated a more natural treatment of logic, Jaśkowski made the earliest attempts at defining a more natural deduction, first in 1929 using a diagrammatic notation, and later updating his proposal in a sequence of papers in 1934 and 1935. His proposals led to d ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Gentzen's Consistency Proof
Gentzen's consistency proof is a result of proof theory in mathematical logic, published by Gerhard Gentzen in 1936. It shows that the Peano axioms of first-order arithmetic do not contain a contradiction (i.e. are "consistent"), as long as a certain other system used in the proof does not contain any contradictions either. This other system, today called " primitive recursive arithmetic with the additional principle of quantifier-free transfinite induction up to the ordinal ε0", is neither weaker nor stronger than the system of Peano axioms. Gentzen argued that it avoids the questionable modes of inference contained in Peano arithmetic and that its consistency is therefore less controversial. Gentzen's theorem Gentzen's theorem is concerned with first-order arithmetic: the theory of the natural numbers, including their addition and multiplication, axiomatized by the first-order Peano axioms. This is a "first-order" theory: the quantifiers extend over natural numbers, but no ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Natural Deduction
In logic and proof theory, natural deduction is a kind of proof calculus in which logical reasoning is expressed by inference rules closely related to the "natural" way of reasoning. This contrasts with Hilbert-style systems, which instead use axioms as much as possible to express the logical laws of deductive reasoning. History Natural deduction grew out of a context of dissatisfaction with the axiomatizations of deductive reasoning common to the systems of Hilbert, Frege, and Russell (see, e.g., Hilbert system). Such axiomatizations were most famously used by Russell and Whitehead in their mathematical treatise ''Principia Mathematica''. Spurred on by a series of seminars in Poland in 1926 by Łukasiewicz that advocated a more natural treatment of logic, Jaśkowski made the earliest attempts at defining a more natural deduction, first in 1929 using a diagrammatic notation, and later updating his proposal in a sequence of papers in 1934 and 1935. His proposals led to d ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cut-elimination Theorem
The cut-elimination theorem (or Gentzen's ''Hauptsatz'') is the central result establishing the significance of the sequent calculus. It was originally proved by Gerhard Gentzen in part I of his landmark 1935 paper "Investigations in Logical Deduction" for the systems LJ and LK formalising intuitionistic and classical logic respectively. The cut-elimination theorem states that any judgement that possesses a proof in the sequent calculus making use of the cut rule also possesses a cut-free proof, that is, a proof that does not make use of the cut rule. The Natural Deduction version of cut-elimination, known as ''normalization theorem'', has been first proved for a variety of logics by Dag Prawitz in 1965 (a similar but less general proof was given the same year by Andrès Raggio). The cut rule A sequent is a logical expression relating multiple formulas, in the form , which is to be read as "If all of hold, then at least one of must hold", or (as Gentzen glossed): "If (A_1 ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Gödel–Gentzen Translation
In proof theory, a discipline within mathematical logic, double-negation translation, sometimes called negative translation, is a general approach for embedding classical logic into intuitionistic logic. Typically it is done by translating formulas to formulas that are classically equivalent but intuitionistically inequivalent. Particular instances of double-negation translations include Glivenko's translation for propositional logic, and the Gödel–Gentzen translation and Kuroda's translation for first-order logic. Propositional logic The easiest double-negation translation to describe comes from Glivenko's theorem, proved by Valery Glivenko in 1929. It maps each classical formula φ to its double negation ¬¬φ. Glivenko's theorem states: :If φ is a propositional formula, then φ is a classical tautology if and only if ¬¬φ is an intuitionistic tautology. Glivenko's theorem implies the more general statement: :If ''T'' is a set of propositional formulas and φ a proposi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Proof Theory
Proof theory is a major branchAccording to , proof theory is one of four domains mathematical logic, together with model theory, axiomatic set theory, and recursion theory. consists of four corresponding parts, with part D being about "Proof Theory and Constructive Mathematics". of mathematical logic and theoretical computer science within which proofs are treated as formal mathematical objects, facilitating their analysis by mathematical techniques. Proofs are typically presented as inductively defined data structures such as lists, boxed lists, or trees, which are constructed according to the axioms and rules of inference of a given logical system. Consequently, proof theory is syntactic in nature, in contrast to model theory, which is semantic in nature. Some of the major areas of proof theory include structural proof theory, ordinal analysis, provability logic, reverse mathematics, proof mining, automated theorem proving, and proof complexity. Much research also ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Ordinal Analysis
In proof theory, ordinal analysis assigns ordinals (often large countable ordinals) to mathematical theories as a measure of their strength. If theories have the same proof-theoretic ordinal they are often equiconsistent, and if one theory has a larger proof-theoretic ordinal than another it can often prove the consistency of the second theory. In addition to obtaining the proof-theoretic ordinal of a theory, in practice ordinal analysis usually also yields various other pieces of information about the theory being analyzed, for example characterizations of the classes of provably recursive, hyperarithmetical, or \Delta^1_2 functions of the theory. History The field of ordinal analysis was formed when Gerhard Gentzen in 1934 used cut elimination to prove, in modern terms, that the proof-theoretic ordinal of Peano arithmetic is ε0. See Gentzen's consistency proof. Definition Ordinal analysis concerns true, effective (recursive) theories that can interpret a sufficient ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Analytic Proof
{{Short description, Fundamental theory of logical analysis In mathematics, an analytic proof is a proof of a theorem in analysis that only makes use of methods from analysis, and that does not predominantly make use of algebraic or geometrical methods. The term was first used by Bernard Bolzano, who first provided a non-analytic proof of his intermediate value theorem and then, several years later provided a proof of the theorem that was free from intuitions concerning lines crossing each other at a point, and so he felt happy calling it analytic (Bolzano 1817). Bolzano's philosophical work encouraged a more abstract reading of when a demonstration could be regarded as analytic, where a proof is analytic if it does not go beyond its subject matter (Sebastik 2007). In proof theory, an analytic proof has come to mean a proof whose structure is simple in a special way, due to conditions on the kind of inferences that ensure none of them go beyond what is contained in the assumptions ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Paul Bernays
Paul Isaac Bernays ( ; ; 17 October 1888 – 18 September 1977) was a Swiss mathematician who made significant contributions to mathematical logic, axiomatic set theory, and the philosophy of mathematics. He was an assistant and close collaborator of David Hilbert. Biography Bernays was born into a distinguished German-Jewish family of scholars and businessmen. His great-grandfather, Isaac ben Jacob Bernays, served as chief rabbi of Hamburg from 1821 to 1849. Bernays spent his childhood in Berlin, and attended the Köllnische Gymnasium, 1895–1907. At the University of Berlin, he studied mathematics under Issai Schur, Edmund Landau, Ferdinand Georg Frobenius, and Friedrich Schottky; philosophy under Alois Riehl, Carl Stumpf and Ernst Cassirer; and physics under Max Planck. At the University of Göttingen, he studied mathematics under David Hilbert, Edmund Landau, Hermann Weyl, and Felix Klein; physics under Voigt and Max Born; and philosophy under Leonard Nelson. In 1 ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Proof-theoretic Semantics
Proof-theoretic semantics is an approach to the semantics of logic that attempts to locate the meaning of propositions and logical connectives not in terms of interpretations, as in Tarskian approaches to semantics, but in the role that the proposition or logical connective plays within a system of inference. Overview Gerhard Gentzen is the founder of proof-theoretic semantics, providing the formal basis for it in his account of cut-elimination for the sequent calculus, and some provocative philosophical remarks about locating the meaning of logical connectives in their introduction rules within natural deduction. The history of proof-theoretic semantics since then has been devoted to exploring the consequences of these ideas. Dag Prawitz extended Gentzen's notion of analytic proof to natural deduction, and suggested that the value of a proof in natural deduction may be understood as its normal form. This idea lies at the basis of the Curry–Howard isomorphism, and ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |