Gaussian Curvature
In differential geometry, the Gaussian curvature or Gauss curvature of a smooth Surface (topology), surface in three-dimensional space at a point is the product of the principal curvatures, and , at the given point: K = \kappa_1 \kappa_2. For example, a sphere of radius has Gaussian curvature everywhere, and a flat plane and a cylinder have Gaussian curvature zero everywhere. The Gaussian curvature can also be negative, as in the case of a hyperboloid or the inside of a torus. Gaussian curvature is an ''intrinsic'' measure of curvature, meaning that it could in principle be measured by a 2-dimensional being living entirely within the surface, because it depends only on distances that are measured “within” or along the surface, not on the way it is isometrically embedding, embedded in Euclidean space. This is the content of the ''Theorema Egregium''. Gaussian curvature is named after Carl Friedrich Gauss, who published the ''Theorema Egregium'' in 1827. Informal definit ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Asymptotic Curve
In the differential geometry of surfaces, an asymptotic curve is a curve always tangent to an asymptotic direction of the surface (where they exist). It is sometimes called an asymptotic line, although it need not be a line. Definitions There are several equivalent definitions for asymptotic directions, or equivalently, asymptotic curves. * The asymptotic directions are the same as the asymptotes of the hyperbola of the Dupin indicatrix through a hyperbolic point, or the unique asymptote through a parabolic point. * An asymptotic direction is a direction along which the normal curvature is zero: take the plane spanned by the direction and the surface's normal at that point. The curve of intersection of the plane and the surface has zero curvature at that point. * An asymptotic curve is a curve such that, at each point, the plane tangent to the surface is an osculating plane of the curve. Properties Asymptotic directions can only occur when the Gaussian curvature is nega ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Covariant Derivative
In mathematics and physics, covariance is a measure of how much two variables change together, and may refer to: Statistics * Covariance matrix, a matrix of covariances between a number of variables * Covariance or cross-covariance between two random variables or data sets * Autocovariance, the covariance of a signal with a time-shifted version of itself * Covariance function, a function giving the covariance of a random field with itself at two locations Algebra and geometry * A covariant (invariant theory) is a bihomogeneous polynomial in and the coefficients of some homogeneous form in that is invariant under some group of linear transformations. * Covariance and contravariance of vectors, properties of how vector coordinates change under a change of basis ** Covariant transformation, a rule that describes how certain physical entities change under a change of coordinate system * Covariance and contravariance of functors, properties of functors * General covariance ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hessian Matrix
In mathematics, the Hessian matrix, Hessian or (less commonly) Hesse matrix is a square matrix of second-order partial derivatives of a scalar-valued Function (mathematics), function, or scalar field. It describes the local curvature of a function of many variables. The Hessian matrix was developed in the 19th century by the German mathematician Otto Hesse, Ludwig Otto Hesse and later named after him. Hesse originally used the term "functional determinants". The Hessian is sometimes denoted by H or \nabla\nabla or \nabla^2 or \nabla\otimes\nabla or D^2. Definitions and properties Suppose f : \R^n \to \R is a function taking as input a vector \mathbf \in \R^n and outputting a scalar f(\mathbf) \in \R. If all second-order partial derivatives of f exist, then the Hessian matrix \mathbf of f is a square n \times n matrix, usually defined and arranged as \mathbf H_f= \begin \dfrac & \dfrac & \cdots & \dfrac \\[2.2ex] \dfrac & \dfrac & \cdots & \dfrac \\[2.2ex] \vdots & \vdot ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Implicit Function Theorem
In multivariable calculus, the implicit function theorem is a tool that allows relations to be converted to functions of several real variables. It does so by representing the relation as the graph of a function. There may not be a single function whose graph can represent the entire relation, but there may be such a function on a restriction of the domain of the relation. The implicit function theorem gives a sufficient condition to ensure that there is such a function. More precisely, given a system of equations (often abbreviated into ), the theorem states that, under a mild condition on the partial derivatives (with respect to each ) at a point, the variables are differentiable functions of the in some neighborhood of the point. As these functions generally cannot be expressed in closed form, they are ''implicitly'' defined by the equations, and this motivated the name of the theorem. In other words, under a mild condition on the partial derivatives, the set of zero ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Shape Operator
In mathematics, the differential geometry of surfaces deals with the differential geometry of smooth surfaces with various additional structures, most often, a Riemannian metric. Surfaces have been extensively studied from various perspectives: ''extrinsically'', relating to their embedding in Euclidean space and ''intrinsically'', reflecting their properties determined solely by the distance within the surface as measured along curves on the surface. One of the fundamental concepts investigated is the Gaussian curvature, first studied in depth by Carl Friedrich Gauss, who showed that curvature was an intrinsic property of a surface, independent of its isometric embedding in Euclidean space. Surfaces naturally arise as graphs of functions of a pair of variables, and sometimes appear in parametric form or as loci associated to space curves. An important role in their study has been played by Lie groups (in the spirit of the Erlangen program), namely the symmetry groups of ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Eigenvalues
In linear algebra, an eigenvector ( ) or characteristic vector is a vector that has its direction unchanged (or reversed) by a given linear transformation. More precisely, an eigenvector \mathbf v of a linear transformation T is scaled by a constant factor \lambda when the linear transformation is applied to it: T\mathbf v=\lambda \mathbf v. The corresponding eigenvalue, characteristic value, or characteristic root is the multiplying factor \lambda (possibly a negative or complex number). Geometrically, vectors are multi-dimensional quantities with magnitude and direction, often pictured as arrows. A linear transformation rotates, stretches, or shears the vectors upon which it acts. A linear transformation's eigenvectors are those vectors that are only stretched or shrunk, with neither rotation nor shear. The corresponding eigenvalue is the factor by which an eigenvector is stretched or shrunk. If the eigenvalue is negative, the eigenvector's direction is reversed. The ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hyperbolic Geometry
In mathematics, hyperbolic geometry (also called Lobachevskian geometry or János Bolyai, Bolyai–Nikolai Lobachevsky, Lobachevskian geometry) is a non-Euclidean geometry. The parallel postulate of Euclidean geometry is replaced with: :For any given line ''R'' and point ''P'' not on ''R'', in the plane containing both line ''R'' and point ''P'' there are at least two distinct lines through ''P'' that do not intersect ''R''. (Compare the above with Playfair's axiom, the modern version of Euclid's parallel postulate.) The hyperbolic plane is a plane (mathematics), plane where every point is a saddle point. Hyperbolic plane geometry is also the geometry of pseudosphere, pseudospherical surfaces, surfaces with a constant negative Gaussian curvature. Saddle surfaces have negative Gaussian curvature in at least some regions, where they local property, locally resemble the hyperbolic plane. The hyperboloid model of hyperbolic geometry provides a representation of event (relativity ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Pseudospherical Surface
In geometry, a pseudosphere is a surface with constant negative Gaussian curvature. A pseudosphere of radius is a surface in \mathbb^3 having curvature −1/''R''2 at each point. Its name comes from the analogy with the sphere of radius , which is a surface of curvature 1/''R''2. The term was introduced by Eugenio Beltrami in his 1868 paper on models of hyperbolic geometry. __TOC__ Tractroid The same surface can be also described as the result of revolving a tractrix about its asymptote. For this reason the pseudosphere is also called a tractroid. As an example, the (half) pseudosphere (with radius 1) is the surface of revolution of the tractrix parametrized by : t \mapsto \left( t - \tanh t, \operatorname\,t \right), \quad \quad 0 \le t < \infty. It is a singular space (the equator is a singularity), but away from the singularities, it has constant negat ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Lemon (geometry)
In geometry, a lemon is a geometric shape that is constructed as the surface of revolution of a circular arc of angle less than half of a full circle rotated about an axis passing through the endpoints of the lens (or arc). The surface of revolution of the complementary arc of the same circle, through the same axis, is called an apple. The apple and lemon together make up a spindle torus (or ''self-crossing torus'' or ''self-intersecting torus''). The lemon forms the boundary of a convex set, while its surrounding apple is non-convex. The ball in North American football has a shape resembling a geometric lemon. However, although used with a related meaning in geometry, the term "football" is more commonly used to refer to a surface of revolution whose Gaussian curvature is positive and constant, formed from a more complicated curve than a circular arc. Alternatively, a football may refer to a more abstract orbifold, a surface modeled locally on a sphere except at two points. ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Sphere
A sphere (from Ancient Greek, Greek , ) is a surface (mathematics), surface analogous to the circle, a curve. In solid geometry, a sphere is the Locus (mathematics), set of points that are all at the same distance from a given point in three-dimensional space.. That given point is the center (geometry), ''center'' of the sphere, and the distance is the sphere's ''radius''. The earliest known mentions of spheres appear in the work of the Greek mathematics, ancient Greek mathematicians. The sphere is a fundamental surface in many fields of mathematics. Spheres and nearly-spherical shapes also appear in nature and industry. Bubble (physics), Bubbles such as soap bubbles take a spherical shape in equilibrium. The Earth is spherical Earth, often approximated as a sphere in geography, and the celestial sphere is an important concept in astronomy. Manufactured items including pressure vessels and most curved mirrors and lenses are based on spheres. Spheres rolling, roll smoothly in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Spherical Geometry
300px, A sphere with a spherical triangle on it. Spherical geometry or spherics () is the geometry of the two-dimensional surface of a sphere or the -dimensional surface of higher dimensional spheres. Long studied for its practical applications to astronomy, navigation, and geodesy, spherical geometry and the metrical tools of spherical trigonometry are in many respects analogous to Euclidean plane geometry and trigonometry, but also have some important differences. The sphere can be studied either ''extrinsically'' as a surface embedded in 3-dimensional Euclidean space (part of the study of solid geometry), or ''intrinsically'' using methods that only involve the surface itself without reference to any surrounding space. Principles In plane (Euclidean) geometry, the basic concepts are points and (straight) lines. In spherical geometry, the basic concepts are points and great circles. However, two great circles on a plane intersect in two antipodal points, unlike coplan ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |