Gaussian Curvature
   HOME

TheInfoList



OR:

In
differential geometry Differential geometry is a Mathematics, mathematical discipline that studies the geometry of smooth shapes and smooth spaces, otherwise known as smooth manifolds. It uses the techniques of Calculus, single variable calculus, vector calculus, lin ...
, the Gaussian curvature or Gauss curvature of a smooth
surface A surface, as the term is most generally used, is the outermost or uppermost layer of a physical object or space. It is the portion or region of the object that can first be perceived by an observer using the senses of sight and touch, and is ...
in three-dimensional space at a point is the product of the
principal curvature In differential geometry, the two principal curvatures at a given point of a surface (mathematics), surface are the maximum and minimum values of the curvature as expressed by the eigenvalues of the shape operator at that point. They measure how ...
s, and , at the given point: K = \kappa_1 \kappa_2. For example, a sphere of radius has Gaussian curvature everywhere, and a flat plane and a cylinder have Gaussian curvature zero everywhere. The Gaussian curvature can also be negative, as in the case of a
hyperboloid In geometry, a hyperboloid of revolution, sometimes called a circular hyperboloid, is the surface generated by rotating a hyperbola around one of its principal axes. A hyperboloid is the surface obtained from a hyperboloid of revolution by def ...
or the inside of a
torus In geometry, a torus (: tori or toruses) is a surface of revolution generated by revolving a circle in three-dimensional space one full revolution about an axis that is coplanarity, coplanar with the circle. The main types of toruses inclu ...
. Gaussian curvature is an ''intrinsic'' measure of
curvature In mathematics, curvature is any of several strongly related concepts in geometry that intuitively measure the amount by which a curve deviates from being a straight line or by which a surface deviates from being a plane. If a curve or su ...
, meaning that it could in principle be measured by a 2-dimensional being living entirely within the surface, because it depends only on distances that are measured “within” or along the surface, not on the way it is isometrically embedded in Euclidean space. This is the content of the '' Theorema Egregium''. Gaussian curvature is named after
Carl Friedrich Gauss Johann Carl Friedrich Gauss (; ; ; 30 April 177723 February 1855) was a German mathematician, astronomer, geodesist, and physicist, who contributed to many fields in mathematics and science. He was director of the Göttingen Observatory and ...
, who published the '' Theorema Egregium'' in 1827.


Informal definition

At any point on a surface, we can find a
normal vector In geometry, a normal is an object (e.g. a line, ray, or vector) that is perpendicular to a given object. For example, the normal line to a plane curve at a given point is the infinite straight line perpendicular to the tangent line to the cu ...
that is at right angles to the surface; planes containing the normal vector are called '' normal planes''. The intersection of a normal plane and the surface will form a curve called a '' normal section'' and the curvature of this curve is the '' normal curvature''. For most points on most “smooth” surfaces, different normal sections will have different curvatures; the maximum and minimum values of these are called the
principal curvature In differential geometry, the two principal curvatures at a given point of a surface (mathematics), surface are the maximum and minimum values of the curvature as expressed by the eigenvalues of the shape operator at that point. They measure how ...
s, call these , . The Gaussian curvature is the product of the two principal curvatures . The sign of the Gaussian curvature can be used to characterise the surface. *If both principal curvatures are of the same sign: , then the Gaussian curvature is positive and the surface is said to have an elliptic point. At such points, the surface will be dome like, locally lying on one side of its tangent plane. All sectional curvatures will have the same sign. *If the principal curvatures have different signs: , then the Gaussian curvature is negative and the surface is said to have a hyperbolic or
saddle point In mathematics, a saddle point or minimax point is a Point (geometry), point on the surface (mathematics), surface of the graph of a function where the slopes (derivatives) in orthogonal directions are all zero (a Critical point (mathematics), ...
. At such points, the surface will be saddle shaped. Because one principal curvature is negative, one is positive, and the normal curvature varies continuously if you rotate a plane orthogonal to the surface around the normal to the surface in two directions, the normal curvatures will be zero giving the asymptotic curves for that point. *If one of the principal curvatures is zero: , the Gaussian curvature is zero and the surface is said to have a parabolic point. Most surfaces will contain regions of positive Gaussian curvature (elliptical points) and regions of negative Gaussian curvature separated by a curve of points with zero Gaussian curvature called a parabolic line.


Relation to geometries

When a surface has a constant zero Gaussian curvature, then it is a developable surface and the geometry of the surface is
Euclidean geometry Euclidean geometry is a mathematical system attributed to ancient Greek mathematics, Greek mathematician Euclid, which he described in his textbook on geometry, ''Euclid's Elements, Elements''. Euclid's approach consists in assuming a small set ...
. When a surface has a constant positive Gaussian curvature, then the geometry of the surface is
spherical geometry 300px, A sphere with a spherical triangle on it. Spherical geometry or spherics () is the geometry of the two-dimensional surface of a sphere or the -dimensional surface of higher dimensional spheres. Long studied for its practical applicati ...
.
Sphere A sphere (from Ancient Greek, Greek , ) is a surface (mathematics), surface analogous to the circle, a curve. In solid geometry, a sphere is the Locus (mathematics), set of points that are all at the same distance from a given point in three ...
s and patches of spheres have this geometry, but there exist other examples as well, such as the lemon / American football. When a surface has a constant negative Gaussian curvature, then it is a pseudospherical surface and the geometry of the surface is
hyperbolic geometry In mathematics, hyperbolic geometry (also called Lobachevskian geometry or János Bolyai, Bolyai–Nikolai Lobachevsky, Lobachevskian geometry) is a non-Euclidean geometry. The parallel postulate of Euclidean geometry is replaced with: :For a ...
.


Relation to principal curvatures

The two principal curvatures at a given point of a
surface A surface, as the term is most generally used, is the outermost or uppermost layer of a physical object or space. It is the portion or region of the object that can first be perceived by an observer using the senses of sight and touch, and is ...
are the
eigenvalues In linear algebra, an eigenvector ( ) or characteristic vector is a vector that has its direction unchanged (or reversed) by a given linear transformation. More precisely, an eigenvector \mathbf v of a linear transformation T is scaled by a ...
of the shape operator at the point. They measure how the surface bends by different amounts in different directions from that point. We represent the surface by the implicit function theorem as the graph of a function, , of two variables, in such a way that the point is a critical point, that is, the gradient of vanishes (this can always be attained by a suitable rigid motion). Then the Gaussian curvature of the surface at is the determinant of the
Hessian matrix In mathematics, the Hessian matrix, Hessian or (less commonly) Hesse matrix is a square matrix of second-order partial derivatives of a scalar-valued Function (mathematics), function, or scalar field. It describes the local curvature of a functio ...
of (being the product of the eigenvalues of the Hessian). (Recall that the Hessian is the 2×2 matrix of second derivatives.) This definition allows one immediately to grasp the distinction between a cup/cap versus a saddle point.


Alternative definitions

It is also given by K = \frac, where is the
covariant derivative In mathematics and physics, covariance is a measure of how much two variables change together, and may refer to: Statistics * Covariance matrix, a matrix of covariances between a number of variables * Covariance or cross-covariance between ...
and is the
metric tensor In the mathematical field of differential geometry, a metric tensor (or simply metric) is an additional structure on a manifold (such as a surface) that allows defining distances and angles, just as the inner product on a Euclidean space allows ...
. At a point on a regular surface in , the Gaussian curvature is also given by K(\mathbf) = \det S(\mathbf), where is the shape operator. A useful formula for the Gaussian curvature is Liouville's equation in terms of the Laplacian in
isothermal coordinates In mathematics, specifically in differential geometry, isothermal coordinates on a Riemannian manifold are local coordinates where the metric is conformal to the Euclidean metric. This means that in isothermal coordinates, the Riemannian metric ...
.


Total curvature

The
surface integral In mathematics, particularly multivariable calculus, a surface integral is a generalization of multiple integrals to integration over surfaces. It can be thought of as the double integral analogue of the line integral. Given a surface, o ...
of the Gaussian curvature over some region of a surface is called the total curvature. The total curvature of a geodesic triangle equals the deviation of the sum of its angles from . The sum of the angles of a triangle on a surface of positive curvature will exceed , while the sum of the angles of a triangle on a surface of negative curvature will be less than . On a surface of zero curvature, such as the
Euclidean plane In mathematics, a Euclidean plane is a Euclidean space of Two-dimensional space, dimension two, denoted \textbf^2 or \mathbb^2. It is a geometric space in which two real numbers are required to determine the position (geometry), position of eac ...
, the angles will sum to precisely radians. \sum_^3 \theta_i = \pi + \iint_T K \,dA. A more general result is the Gauss–Bonnet theorem.


Important theorems


''Theorema egregium''

Gauss's ''Theorema egregium'' (Latin: "remarkable theorem") states that Gaussian curvature of a surface can be determined from the measurements of length on the surface itself. In fact, it can be found given the full knowledge of the
first fundamental form In differential geometry, the first fundamental form is the inner product on the tangent space of a surface in three-dimensional Euclidean space which is induced canonically from the dot product of . It permits the calculation of curvature and ...
and expressed via the first fundamental form and its
partial derivative In mathematics, a partial derivative of a function of several variables is its derivative with respect to one of those variables, with the others held constant (as opposed to the total derivative, in which all variables are allowed to vary). P ...
s of first and second order. Equivalently, the
determinant In mathematics, the determinant is a Scalar (mathematics), scalar-valued function (mathematics), function of the entries of a square matrix. The determinant of a matrix is commonly denoted , , or . Its value characterizes some properties of the ...
of the second fundamental form of a surface in can be so expressed. The "remarkable", and surprising, feature of this theorem is that although the ''definition'' of the Gaussian curvature of a surface in certainly depends on the way in which the surface is located in space, the end result, the Gaussian curvature itself, is determined by the intrinsic metric of the surface without any further reference to the ambient space: it is an
intrinsic In science and engineering, an intrinsic property is a property of a specified subject that exists itself or within the subject. An extrinsic property is not essential or inherent to the subject that is being characterized. For example, mass i ...
invariant. In particular, the Gaussian curvature is invariant under isometric deformations of the surface. In contemporary
differential geometry Differential geometry is a Mathematics, mathematical discipline that studies the geometry of smooth shapes and smooth spaces, otherwise known as smooth manifolds. It uses the techniques of Calculus, single variable calculus, vector calculus, lin ...
, a "surface", viewed abstractly, is a two-dimensional
differentiable manifold In mathematics, a differentiable manifold (also differential manifold) is a type of manifold that is locally similar enough to a vector space to allow one to apply calculus. Any manifold can be described by a collection of charts (atlas). One ...
. To connect this point of view with the classical theory of surfaces, such an abstract surface is embedded into and endowed with the
Riemannian metric In differential geometry, a Riemannian manifold is a geometric space on which many geometric notions such as distance, angles, length, volume, and curvature are defined. Euclidean space, the N-sphere, n-sphere, hyperbolic space, and smooth surf ...
given by the first fundamental form. Suppose that the image of the embedding is a surface in . A ''local isometry'' is a
diffeomorphism In mathematics, a diffeomorphism is an isomorphism of differentiable manifolds. It is an invertible function that maps one differentiable manifold to another such that both the function and its inverse are continuously differentiable. Definit ...
between open regions of whose restriction to is an isometry onto its image. ''Theorema egregium'' is then stated as follows: For example, the Gaussian curvature of a cylindrical tube is zero, the same as for the "unrolled" tube (which is flat). On the other hand, since a
sphere A sphere (from Ancient Greek, Greek , ) is a surface (mathematics), surface analogous to the circle, a curve. In solid geometry, a sphere is the Locus (mathematics), set of points that are all at the same distance from a given point in three ...
of radius has constant positive curvature and a flat plane has constant curvature 0, these two surfaces are not isometric, not even locally. Thus any planar representation of even a small part of a sphere must distort the distances. Therefore, no
cartographic projection Cartography (; from , 'papyrus, sheet of paper, map'; and , 'write') is the study and practice of making and using maps. Combining science, aesthetics and technique, cartography builds on the premise that reality (or an imagined reality) can ...
is perfect.


Gauss–Bonnet theorem

The Gauss–Bonnet theorem relates the total curvature of a surface to its
Euler characteristic In mathematics, and more specifically in algebraic topology and polyhedral combinatorics, the Euler characteristic (or Euler number, or Euler–Poincaré characteristic) is a topological invariant, a number that describes a topological space's ...
and provides an important link between local geometric properties and global topological properties. :\int_M K\,dA+\int_k_g\,ds=2\pi\chi(M), \,


Surfaces of constant curvature

* Minding's theorem (1839) states that all surfaces with the same constant curvature are locally isometric. A consequence of Minding's theorem is that any surface whose curvature is identically zero can be constructed by bending some plane region. Such surfaces are called developable surfaces. Minding also raised the question of whether a closed surface with constant positive curvature is necessarily rigid. * Liebmann's theorem (1900) answered Minding's question. The only regular (of class ) closed surfaces in with constant positive Gaussian curvature are
sphere A sphere (from Ancient Greek, Greek , ) is a surface (mathematics), surface analogous to the circle, a curve. In solid geometry, a sphere is the Locus (mathematics), set of points that are all at the same distance from a given point in three ...
s. If a sphere is deformed, it does not remain a sphere, proving that a sphere is rigid. A standard proof uses Hilbert's lemma that non- umbilical points of extreme principal curvature have non-positive Gaussian curvature. * Hilbert's theorem (1901) states that there exists no complete analytic (class ) regular surface in of constant negative Gaussian curvature. In fact, the conclusion also holds for surfaces of class immersed in , but breaks down for -surfaces. The
pseudosphere In geometry, a pseudosphere is a surface with constant negative Gaussian curvature. A pseudosphere of radius is a surface in \mathbb^3 having Gaussian curvature, curvature −1/''R''2 at each point. Its name comes from the analogy with the sphere ...
has constant negative Gaussian curvature except at its boundary circle, where the gaussian curvature is not defined. There are other surfaces which have constant positive Gaussian curvature. Manfredo do Carmo considers surfaces of revolution (\phi(v) \cos(u), \phi(v) \sin(u), \psi(v)) where \phi(v) = C \cos v, and \psi(v) = \int_0^v \sqrt\ dv' (an incomplete Elliptic integral of the second kind). These surfaces all have constant Gaussian curvature of 1, but, for C\ne 1 either have a boundary or a singular point. do Carmo also gives three different examples of surface with constant negative Gaussian curvature, one of which is
pseudosphere In geometry, a pseudosphere is a surface with constant negative Gaussian curvature. A pseudosphere of radius is a surface in \mathbb^3 having Gaussian curvature, curvature −1/''R''2 at each point. Its name comes from the analogy with the sphere ...
. There are many other possible bounded surfaces with constant Gaussian curvature. Whilst the sphere is rigid and can not be bent using an isometry, if a small region removed, or even a cut along a small segment, then the resulting surface can be bent. Such bending preserves Gaussian curvature so any such bending of a sphere with a region removed will also have constant Gaussian curvature.


Alternative formulas

*Gaussian curvature of a surface in can be expressed as the ratio of the
determinant In mathematics, the determinant is a Scalar (mathematics), scalar-valued function (mathematics), function of the entries of a square matrix. The determinant of a matrix is commonly denoted , , or . Its value characterizes some properties of the ...
s of the
second The second (symbol: s) is a unit of time derived from the division of the day first into 24 hours, then to 60 minutes, and finally to 60 seconds each (24 × 60 × 60 = 86400). The current and formal definition in the International System of U ...
and first fundamental forms and : K = \frac = \frac. *The (after Francesco Brioschi) gives Gaussian curvature solely in terms of the first fundamental form: K =\frac *For an ''
orthogonal In mathematics, orthogonality (mathematics), orthogonality is the generalization of the geometric notion of ''perpendicularity''. Although many authors use the two terms ''perpendicular'' and ''orthogonal'' interchangeably, the term ''perpendic ...
parametrization'' (), Gaussian curvature is: K = -\frac\left(\frac\frac + \frac \frac\right). *For a surface described as graph of a function , Gaussian curvature is: K = \frac * For an implicitly defined surface, , the Gaussian curvature can be expressed in terms of the gradient and
Hessian matrix In mathematics, the Hessian matrix, Hessian or (less commonly) Hesse matrix is a square matrix of second-order partial derivatives of a scalar-valued Function (mathematics), function, or scalar field. It describes the local curvature of a functio ...
: K = -\frac =-\frac * For a surface with metric conformal to the Euclidean one, so and , the Gauss curvature is given by ( being the usual
Laplace operator In mathematics, the Laplace operator or Laplacian is a differential operator given by the divergence of the gradient of a Scalar field, scalar function on Euclidean space. It is usually denoted by the symbols \nabla\cdot\nabla, \nabla^2 (where \ ...
): K = -\frac\Delta \sigma. *Gaussian curvature is the limiting difference between the
circumference In geometry, the circumference () is the perimeter of a circle or ellipse. The circumference is the arc length of the circle, as if it were opened up and straightened out to a line segment. More generally, the perimeter is the curve length arou ...
of a '' geodesic circle'' and a circle in the plane: Bertrand–Diquet–Puiseux theorem K = \lim_ 3\frac *Gaussian curvature is the limiting difference between the
area Area is the measure of a region's size on a surface. The area of a plane region or ''plane area'' refers to the area of a shape or planar lamina, while '' surface area'' refers to the area of an open surface or the boundary of a three-di ...
of a '' geodesic disk'' and a disk in the plane: K = \lim_12\frac *Gaussian curvature may be expressed with the ''
Christoffel symbols In mathematics and physics, the Christoffel symbols are an array of numbers describing a metric connection. The metric connection is a specialization of the affine connection to surface (topology), surfaces or other manifolds endowed with a metri ...
'': K = -\frac \left( \frac\Gamma_^2 - \frac\Gamma_^2 + \Gamma_^1\Gamma_^2 - \Gamma_^1\Gamma_^2 + \Gamma_^2\Gamma_^2 - \Gamma_^2\Gamma_^2\right)


See also

* Earth's Gaussian radius of curvature *
Sectional curvature In Riemannian geometry, the sectional curvature is one of the ways to describe the curvature of Riemannian manifolds. The sectional curvature ''K''(σ''p'') depends on a two-dimensional linear subspace σ''p'' of the tangent space at a po ...
* Mean curvature * Gauss map *
Riemann curvature tensor Georg Friedrich Bernhard Riemann (; ; 17September 182620July 1866) was a German mathematician who made profound contributions to mathematical analysis, analysis, number theory, and differential geometry. In the field of real analysis, he is mos ...
*
Principal curvature In differential geometry, the two principal curvatures at a given point of a surface (mathematics), surface are the maximum and minimum values of the curvature as expressed by the eigenvalues of the shape operator at that point. They measure how ...


References


Books

* *


External links

* {{Carl Friedrich Gauss Curvature tensors Differential geometry Differential geometry of surfaces Surfaces Differential topology Carl Friedrich Gauss