HOME
*





Gammasphere
The Gammasphere is a third generation gamma ray spectrometer used to study rare and exotic nuclear physics. It consists of 110 Compton-suppressed large volume, high-purity germanium detectors arranged in a spherical shell. Gammasphere has been used to perform a variety of experiments in nuclear physics. Most experiments involve using heavy ion nuclear fusion to form a highly excited atomic nucleus. This nucleus may then emit protons, neutrons, or alpha particles followed by a shower of tens of gamma rays. Gammasphere is used to measure properties of these gamma-rays for tens of millions of such gamma ray showers. The resultant data are analyzed to gain a deeper understanding of the properties of nuclei. Gammasphere was built in the early 1990s and has operated at the 88-inch cyclotron at Berkeley National Laboratory and at Argonne National Laboratory. In the movie ''Hulk'', Bruce Banner is zapped by a machine called the Gammasphere. The actual Gammasphere, which detects rather t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Canadian Penning Trap Mass Spectrometer
The Canadian Penning Trap Mass Spectrometer (CPT) is one of the major pieces of experimental equipment that is installed on the ATLAS superconducting heavy-ion linac facility at the Physics Division of the Argonne National Laboratory. It was developed and operated by physicist Guy Savard and a collaboration of other scientists at Argonne, the University of Manitoba, McGill University, Texas A&M University and the State University of New York. Development The CPT was originally built for the Tandem Accelerator Superconducting Cyclotron (TASCC) facility at Chalk River Laboratories in Chalk River, Ontario, Canada. However, it was transferred to Argonne National Laboratory when the TASCC accelerator was decommissioned in 1998 due to funding issues. The CPT spectrometer is designed to provide high-precision mass measurements of short-lived isotopes using radio-frequency (RF) fields. Accurate mass measurements of particular isotopes such as selenium-68 are important in the under ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hulk (film)
''Hulk'' (also known as ''The Hulk'') is a 2003 American superhero film based on the Marvel Comics character of the same name, created by Stan Lee and Jack Kirby. Directed by Ang Lee and written by James Schamus, Michael France, and John Turman from a story by Schamus, it stars Eric Bana as Bruce Banner / Hulk, alongside Jennifer Connelly, Sam Elliott, Josh Lucas, and Nick Nolte. The film explores Bruce Banner's origins. After a lab accident involving gamma radiation, he transforms into a giant, green-skinned creature known as the "Hulk" whenever stressed or emotionally provoked. The United States military pursues him, and he clashes with his biological father, who has dark plans for his son. Development for the film started as far back as 1990. At one point, Joe Johnston and then Jonathan Hensleigh were to direct the movie. Hensleigh, John Turman, Michael France, Zak Penn, J. J. Abrams, Michael Tolkin, David Hayter, Scott Alexander, and Larry Karaszewski wrote ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Argonne National Laboratory
Argonne National Laboratory is a science and engineering research national laboratory operated by UChicago Argonne LLC for the United States Department of Energy. The facility is located in Lemont, Illinois, outside of Chicago, and is the largest national laboratory by size and scope in the Midwest. Argonne had its beginnings in the Metallurgical Laboratory of the University of Chicago, formed in part to carry out Enrico Fermi's work on nuclear reactors for the Manhattan Project during World War II. After the war, it was designated as the first national laboratory in the United States on July 1, 1946. In the post-war era the lab focused primarily on non-weapon related nuclear physics, designing and building the first power-producing nuclear reactors, helping design the reactors used by the United States' nuclear navy, and a wide variety of similar projects. In 1994, the lab's nuclear mission ended, and today it maintains a broad portfolio in basic science research, energy ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Helical Orbit Spectrometer (HELIOS)
The helical orbit spectrometer (HELIOS) is a measurement device for studying nuclear reactions in inverse kinematics. It is installed at the Argonne Tandem Linear Accelerator System, ATLAS facility at Argonne National Laboratory. History The HELIOS concept was first proposed at the ''Workshop on Experimental Equipment for an Advanced ISOL Facility'' at Lawrence Berkeley National Laboratory in 1998. The concept was introduced as a next-generation large-acceptance spectrometer for measuring heavy ion reactions. Concept Schematically, HELIOS is based around a large-bore superconducting solenoid. Accelerated heavy-ion beams enter the solenoid along the magnetic axis, passing through a hollow detector array. The beam then intercepts a "light-ion" target, also on the magnetic axis. In the configuration shown in the figure, charged reaction products ejected rearward in the laboratory frame move in helical orbits to the detector array. Heavy beam-like recoils are kinematically focused ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Atomic Nucleus
The atomic nucleus is the small, dense region consisting of protons and neutrons at the center of an atom, discovered in 1911 by Ernest Rutherford based on the 1909 Geiger–Marsden experiments, Geiger–Marsden gold foil experiment. After the discovery of the neutron in 1932, models for a nucleus composed of protons and neutrons were quickly developed by Dmitri Ivanenko and Werner Heisenberg. An atom is composed of a positively charged nucleus, with a cloud of negatively charged electrons surrounding it, bound together by electrostatic force. Almost all of the mass of an atom is located in the nucleus, with a very small contribution from the electron cloud. Protons and neutrons are bound together to form a nucleus by the nuclear force. The diameter of the nucleus is in the range of () for hydrogen (the diameter of a single proton) to about for uranium. These dimensions are much smaller than the diameter of the atom itself (nucleus + electron cloud), by a factor of about 2 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Proton
A proton is a stable subatomic particle, symbol , H+, or 1H+ with a positive electric charge of +1 ''e'' elementary charge. Its mass is slightly less than that of a neutron and 1,836 times the mass of an electron (the proton–electron mass ratio). Protons and neutrons, each with masses of approximately one atomic mass unit, are jointly referred to as "nucleons" (particles present in atomic nuclei). One or more protons are present in the Atomic nucleus, nucleus of every atom. They provide the attractive electrostatic central force which binds the atomic electrons. The number of protons in the nucleus is the defining property of an element, and is referred to as the atomic number (represented by the symbol ''Z''). Since each chemical element, element has a unique number of protons, each element has its own unique atomic number, which determines the number of atomic electrons and consequently the chemical characteristics of the element. The word ''proton'' is Greek language, G ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Nuclear Fusion
Nuclear fusion is a reaction in which two or more atomic nuclei are combined to form one or more different atomic nuclei and subatomic particles (neutrons or protons). The difference in mass between the reactants and products is manifested as either the release or absorption of energy. This difference in mass arises due to the difference in nuclear binding energy between the atomic nuclei before and after the reaction. Nuclear fusion is the process that powers active or main-sequence stars and other high-magnitude stars, where large amounts of energy are released. A nuclear fusion process that produces atomic nuclei lighter than iron-56 or nickel-62 will generally release energy. These elements have a relatively small mass and a relatively large binding energy per nucleon. Fusion of nuclei lighter than these releases energy (an exothermic process), while the fusion of heavier nuclei results in energy retained by the product nucleons, and the resulting reaction is end ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Alpha Particle
Alpha particles, also called alpha rays or alpha radiation, consist of two protons and two neutrons bound together into a particle identical to a helium-4 nucleus. They are generally produced in the process of alpha decay, but may also be produced in other ways. Alpha particles are named after the first letter in the Greek alphabet, α. The symbol for the alpha particle is α or α2+. Because they are identical to helium nuclei, they are also sometimes written as or indicating a helium ion with a +2 charge (missing its two electrons). Once the ion gains electrons from its environment, the alpha particle becomes a normal (electrically neutral) helium atom . Alpha particles have a net spin of zero. Due to the mechanism of their production in standard alpha radioactive decay, alpha particles generally have a kinetic energy of about 5  MeV, and a velocity in the vicinity of 4% of the speed of light. (See discussion below for the limits of these figures in alpha decay.) T ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gamma Ray
A gamma ray, also known as gamma radiation (symbol γ or \gamma), is a penetrating form of electromagnetic radiation arising from the radioactive decay of atomic nucleus, atomic nuclei. It consists of the shortest wavelength electromagnetic waves, typically shorter than those of X-rays. With frequency, frequencies above 30 exahertz (), it imparts the highest photon energy. Paul Ulrich Villard, Paul Villard, a French chemist and physicist, discovered gamma radiation in 1900 while studying radiation emitted by radium. In 1903, Ernest Rutherford named this radiation ''gamma rays'' based on their relatively strong penetration of matter; in 1900 he had already named two less penetrating types of decay radiation (discovered by Henri Becquerel) alpha particle, alpha rays and beta particle, beta rays in ascending order of penetrating power. Gamma rays from radioactive decay are in the energy range from a few kiloelectronvolts (keV) to approximately 8 megaelectronvolts (MeV), corres ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cyclotron
A cyclotron is a type of particle accelerator invented by Ernest O. Lawrence in 1929–1930 at the University of California, Berkeley, and patented in 1932. Lawrence, Ernest O. ''Method and apparatus for the acceleration of ions'', filed: January 26, 1932, granted: February 20, 1934 A cyclotron accelerates charged particles outwards from the center of a flat cylindrical vacuum chamber along a spiral path. The particles are held to a spiral trajectory by a static magnetic field and accelerated by a rapidly varying electric field. Lawrence was awarded the 1939 Nobel Prize in Physics for this invention. The cyclotron was the first "cyclical" accelerator. The primary accelerators before the development of the cyclotron were electrostatic accelerators, such as the Cockcroft–Walton accelerator and Van de Graaff generator. In these accelerators, particles would cross an accelerating electric field only once. Thus, the energy gained by the particles was limited by the maximu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]