Game Complexity
Combinatorial game theory measures game complexity in several ways: #State-space complexity (the number of legal game positions from the initial position) #Game tree size (total number of possible games) #Decision complexity (number of leaf nodes in the smallest decision tree for initial position) #Game-tree complexity (number of leaf nodes in the smallest full-width decision tree for initial position) #Computational complexity (asymptotic difficulty of a game as it grows arbitrarily large) These measures involve understanding the game positions, possible outcomes, and Computational complexity theory, computational complexity of various game scenarios. Measures of game complexity State-space complexity The ''state-space complexity'' of a game is the number of legal game positions reachable from the initial position of the game. When this is too hard to calculate, an upper bound can often be computed by also counting (some) illegal positions (positions that can never arise i ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Combinatorial Game Theory
Combinatorial game theory is a branch of mathematics and theoretical computer science that typically studies sequential games with perfect information. Research in this field has primarily focused on two-player games in which a ''position'' evolves through alternating ''moves'', each governed by well-defined rules, with the aim of achieving a specific winning condition. Unlike game theory, economic game theory, combinatorial game theory generally avoids the study of games of chance or games involving imperfect information, preferring instead games in which the current state and the full set of available moves are always known to both players. However, as mathematical techniques develop, the scope of analyzable games expands, and the boundaries of the field continue to evolve. Authors typically define the term "game" at the outset of academic papers, with definitions tailored to the specific game under analysis rather than reflecting the field’s full scope. Combinatorics, Comb ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Computer Memory
Computer memory stores information, such as data and programs, for immediate use in the computer. The term ''memory'' is often synonymous with the terms ''RAM,'' ''main memory,'' or ''primary storage.'' Archaic synonyms for main memory include ''core'' (for magnetic core memory) and ''store''. Main memory operates at a high speed compared to mass storage which is slower but less expensive per bit and higher in capacity. Besides storing opened programs and data being actively processed, computer memory serves as a Page cache, mass storage cache and write buffer to improve both reading and writing performance. Operating systems borrow RAM capacity for caching so long as it is not needed by running software. If needed, contents of the computer memory can be transferred to storage; a common way of doing this is through a memory management technique called ''virtual memory''. Modern computer memory is implemented as semiconductor memory, where data is stored within memory cell (com ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Sim (pencil Game)
Sim is a two-player paper-and-pencil game. Gameplay Six dots ( vertices) are drawn. Each dot is connected to every other dot by a line ( edge). Two players take turns coloring any uncolored lines. One player colors in one color, and the other colors in another color, with each player trying to avoid the creation of a triangle made solely of their color (only triangles with the dots as all corners count; intersections of lines are not relevant); the player who completes such a triangle loses immediately. Analysis Ramsey theory can also be used to show that no game of Sim can end in a tie. Specifically, since the '' Ramsey number'' ''R''(3, 3) is equal to 6, any two-coloring of the complete graph on 6 vertices (''K''6) must contain a monochromatic triangle, and therefore is not a tied position. This will also apply to any super-graph of ''K''6. For another proof that there must eventually be a triangle of either color, see the Theorem on friends and strangers. Computer sear ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Tic-tac-toe
Tic-tac-toe (American English), noughts and crosses (English in the Commonwealth of Nations, Commonwealth English), or Xs and Os (Canadian English, Canadian or Hiberno-English, Irish English) is a paper-and-pencil game for two players who take turns marking the spaces in a three-by-three grid, one with Xs and the other with Os. A player wins when they mark all three spaces of a row, column, or diagonal of the grid, whereupon they traditionally draw a line through those three marks to indicate the win. It is a solved game, with a forced draw assuming Best response, best play from both players. Names In American English, the game is known as "tic-tac-toe". It may also be spelled "tick-tack-toe", "tick-tat-toe", or "tit-tat-toe". In Commonwealth English (particularly British English, British, South African English, South African, Indian English, Indian, Australian English, Australian, and New Zealand English), the game is known as "noughts and crosses", alternatively spelled ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Complexity Class
In computational complexity theory, a complexity class is a set (mathematics), set of computational problems "of related resource-based computational complexity, complexity". The two most commonly analyzed resources are time complexity, time and space complexity, memory. In general, a complexity class is defined in terms of a type of computational problem, a model of computation, and a bounded resource like time complexity, time or space complexity, memory. In particular, most complexity classes consist of decision problems that are solvable with a Turing machine, and are differentiated by their time or space (memory) requirements. For instance, the class P (complexity), P is the set of decision problems solvable by a deterministic Turing machine in polynomial time. There are, however, many complexity classes defined in terms of other types of problems (e.g. Counting problem (complexity), counting problems and function problems) and using other models of computation (e.g. probabil ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Ply (game Theory)
In two-or-more-player sequential games, a ply is one turn taken by one of the players. The word is used to clarify what is meant when one might otherwise say "turn". The word "turn" can be a problem since it means different things in different traditions. For example, in standard chess terminology, one ''move'' consists of a turn by each player; therefore a ply in chess is a ''half-move''. Thus, after 20 moves in a chess game, 40 plies have been completed—20 by white and 20 by black. In the game of Go (game), Go, by contrast, a ply is the normal unit of counting moves; so for example to say that a game is ''250 moves long'' is to imply 250 plies. In poker with ''n'' players the word "street" is used for a full betting round consisting of ''n'' plies; each dealt card may sometimes also be called a "street". For instance, in heads up Texas hold'em, a street consists of 2 plies, with possible plays being check/raise/call/fold: the first by the player at the big blind, and the sec ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
![]() |
Logarithm
In mathematics, the logarithm of a number is the exponent by which another fixed value, the base, must be raised to produce that number. For example, the logarithm of to base is , because is to the rd power: . More generally, if , then is the logarithm of to base , written , so . As a single-variable function, the logarithm to base is the inverse of exponentiation with base . The logarithm base is called the ''decimal'' or ''common'' logarithm and is commonly used in science and engineering. The ''natural'' logarithm has the number as its base; its use is widespread in mathematics and physics because of its very simple derivative. The ''binary'' logarithm uses base and is widely used in computer science, information theory, music theory, and photography. When the base is unambiguous from the context or irrelevant it is often omitted, and the logarithm is written . Logarithms were introduced by John Napier in 1614 as a means of simplifying calculation ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
PSPACE-complete
In computational complexity theory, a decision problem is PSPACE-complete if it can be solved using an amount of memory that is polynomial in the input length (PSPACE, polynomial space) and if every other problem that can be solved in polynomial space can be Polynomial-time reduction, transformed to it in polynomial time. The problems that are PSPACE-complete can be thought of as the hardest problems in PSPACE, the class of decision problems solvable in polynomial space, because a solution to any one such problem could easily be used to solve any other problem in PSPACE. Problems known to be PSPACE-complete include determining properties of regular expressions and context-sensitive grammars, determining the truth of quantified Boolean formula problem, quantified Boolean formulas, step-by-step changes between solutions of combinatorial optimization problems, and many puzzles and games. Theory A problem is defined to be PSPACE-complete if it can be solved using a polynomial amount o ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
PSPACE
In computational complexity theory, PSPACE is the set of all decision problems that can be solved by a Turing machine using a polynomial amount of space. Formal definition If we denote by SPACE(''f''(''n'')), the set of all problems that can be solved by Turing machines using ''O''(''f''(''n'')) space for some function ''f'' of the input size ''n'', then we can define PSPACE formally asArora & Barak (2009) p.81 :\mathsf = \bigcup_ \mathsf(n^k). It turns out that allowing the Turing machine to be nondeterministic does not add any extra power. Because of Savitch's theorem,Arora & Barak (2009) p.85 NPSPACE is equivalent to PSPACE, essentially because a deterministic Turing machine can simulate a nondeterministic Turing machine without needing much more space (even though it may use much more time).Arora & Barak (2009) p.86 Also, the complements of all problems in PSPACE are also in PSPACE, meaning that co-PSPACE PSPACE. Relation among other classes The following re ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
![]() |
M,n,k-game
An ''m'',''n'',''k''-game is an abstract board game in which two players take turns in placing a stone of their color on an ''m''-by-''n'' board, the winner being the player who first gets ''k'' stones of their own color in a row, horizontally, vertically, or diagonally.J. W. H. M. Uiterwijk and H. J van der Herik, ''The advantage of the initiative'', Information Sciences 122 (1) (2000) 43-58. Jaap van den Herik, Jos W.H.M. Uiterwijk, Jack van Rijswijck (2002). "Games solved: Now and in the future". Artificial Intelligence. Thus, tic-tac-toe is the 3,3,3-game and free-style gomoku is the 15,15,5-game. An ''m'',''n'',''k''-game is also called a ''k''-in-a-row game on an ''m''-by-''n'' board. The ''m'',''n'',''k''-games are mainly of mathematical interest. One seeks to find the game-theoretic value, the result of the game with perfect play. This is known as solving the game. Strategy stealing argument A standard strategy stealing argument from combinatorial game theory shows ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
![]() |
GitHub
GitHub () is a Proprietary software, proprietary developer platform that allows developers to create, store, manage, and share their code. It uses Git to provide distributed version control and GitHub itself provides access control, bug tracking system, bug tracking, software feature requests, task management, continuous integration, and wikis for every project. Headquartered in California, GitHub, Inc. has been a subsidiary of Microsoft since 2018. It is commonly used to host open source software development projects. GitHub reported having over 100 million developers and more than 420 million Repository (version control), repositories, including at least 28 million public repositories. It is the world's largest source code host Over five billion developer contributions were made to more than 500 million open source projects in 2024. About Founding The development of the GitHub platform began on October 19, 2005. The site was launched in April 2008 by Tom ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
![]() |
Backward Induction
Backward induction is the process of determining a sequence of optimal choices by reasoning from the endpoint of a problem or situation back to its beginning using individual events or actions. Backward induction involves examining the final point in a series of decisions and identifying the optimal process or action required to arrive at that point. This process continues backward until the best action for every possible point along the sequence is determined. Backward induction was first utilized in 1875 by Arthur Cayley, who discovered the method while attempting to solve the secretary problem. In dynamic programming, a method of mathematical optimization, backward induction is used for solving the Bellman equation. In the related fields of automated planning and scheduling and automated theorem proving, the method is called backward search or backward chaining. In chess, it is called retrograde analysis. In game theory, a variant of backward induction is used to compute subgame ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |