HOME



picture info

Freescale 68HC11
The 68HC11 (also abbreviated as 6811 or HC11) is an 8-bit microcontroller family introduced by Motorola Semiconductor in 1984 (later from Freescale then NXP). It descended from the Motorola 6800 microprocessor by way of the 6801. The 68HC11 devices are more powerful and more expensive than the 68HC08 microcontrollers and are used in automotive applications, barcode readers, hotel card key writers, amateur robotics, and various other embedded systems. The MC68HC11A8 was the first microcontroller to include CMOS EEPROM. Architecture Internally, the HC11 instruction set is backward compatible with the 6800 and features the addition of a Y index register. It has two eight-bit accumulators, A and B, two sixteen-bit index registers, X and Y, a condition code register, a 16-bit stack pointer, and a program counter. In addition, there is an 8 x 8-bit multiply (A x B), with full 16-bit result, and fractional/integer 16-bit by 16-bit divide instructions. A range of 16-bit instr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Dual In-line Package
In microelectronics, a dual in-line package (DIP or DIL) is an Semiconductor package, electronic component package with a rectangular housing and two parallel rows of electrical connecting pins. The package may be through-hole technology, through-hole mounted to a printed circuit board (PCB) or inserted in a socket. The dual-inline format was invented by Don Forbes, Rex Rice and Bryant Rogers at Fairchild Semiconductor, Fairchild R&D in 1964, when the restricted number of leads available on circular transistor-style packages became a limitation in the use of integrated circuits. Increasingly complex circuits required more signal and power supply leads (as observed in Rent's rule); eventually microprocessors and similar complex devices required more leads than could be put on a DIP package, leading to development of higher-density chip carriers. Furthermore, square and rectangular packages made it easier to route printed-circuit traces beneath the packages. A DIP is usually refer ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Zero Flag
The zero flag is a single bit flag that is a central feature on most conventional CPU architectures (including x86, ARM, PDP-11, 68000, 6502, and numerous others). It is often stored in a dedicated register, typically called status register or flag register, along with other flags. The zero flag is typically abbreviated Z or ZF or similar in most documentation and assembly languages. Along with a carry flag, a sign flag and an overflow flag, the zero flag is used to check the result of an arithmetic operation, including bitwise logical instructions. It is set to 1, or true, if an arithmetic result is zero, and reset otherwise. This includes results which are not stored, as most traditional instruction sets implement the compare instruction as a subtract where the result is discarded. It is also common that processors have a bitwise AND-instruction that does not store the result. The logical formula of the zero flag for a twos-complement binary operand is NOT(OR(all ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Program Counter
The program counter (PC), commonly called the instruction pointer (IP) in Intel x86 and Itanium microprocessors, and sometimes called the instruction address register (IAR), the instruction counter, or just part of the instruction sequencer, is a processor register that indicates where a computer is in its program sequence. Usually, the PC is incremented after fetching an instruction, and holds the memory address of (" points to") the next instruction that would be executed. Processors usually fetch instructions sequentially from memory, but ''control transfer'' instructions change the sequence by placing a new value in the PC. These include branches (sometimes called jumps), subroutine calls, and returns. A transfer that is conditional on the truth of some assertion lets the computer follow a different sequence under different conditions. A branch provides that the next instruction is fetched from elsewhere in memory. A subroutine call not only branches but saves the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Stack Pointer
A stack register is a computer central processor register whose purpose is to keep track of a call stack. On an accumulator-based architecture machine, this may be a dedicated register. On a machine with multiple general-purpose registers, it may be a register that is reserved by convention, such as on the IBM System/360 through z/Architecture architecture and RISC architectures, or it may be a register that procedure call and return instructions are hardwired to use, such as on the PDP-11, VAX, and Intel x86 architectures. Some designs such as the Data General Eclipse had no dedicated register, but used a reserved hardware memory address for this function. Machines before the late 1960s—such as the PDP-8 and HP 2100—did not have compilers which supported recursion. Their subroutine instructions typically would save the current location in the jump address, and then set the program counter to the ''next'' address. While this is simpler than maintaining a stack, sin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


16-bit Computing
16-bit microcomputers are microcomputers that use 16-bit microprocessors. A 16-bit register can store 216 different values. The range of integer values that can be stored in 16 bits depends on the integer representation used. With the two most common representations, the range is 0 through 65,535 (216 − 1) for representation as an ( unsigned) binary number, and −32,768 (−1 × 215) through 32,767 (215 − 1) for representation as two's complement. Since 216 is 65,536, a processor with 16-bit memory addresses can directly access 64 KB (65,536 bytes) of byte-addressable memory. If a system uses segmentation with 16-bit segment offsets, more can be accessed. As of 2025, 16-bit microcontrollers cost well under a dollar (similar to close in price legacy 8-bit); the cheapest 16-bit microcontrollers cost less than other types including any 8-bit (and are more powerful, and easier to program generally), making 8-bit legacy microcontrollers not worth it for new applications ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Accumulator (computing)
In a computer's central processing unit (CPU), the accumulator is a register in which intermediate arithmetic logic unit results are stored. Without a register like an accumulator, it would be necessary to write the result of each calculation (addition, multiplication, shift, etc.) to cache or main memory, perhaps only to be read right back again for use in the next operation. Accessing memory is slower than accessing a register like an accumulator because the technology used for the large main memory is slower (but cheaper) than that used for a register. Early electronic computer systems were often split into two groups, those with accumulators and those without. Modern computer systems often have multiple general-purpose registers that can operate as accumulators, and the term is no longer as common as it once was. However, to simplify their design, a number of special-purpose processors still use a single accumulator. Basic concept Mathematical operations often take ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Eight-bit
In computer architecture, 8-bit integers or other data units are those that are 8 bits wide (1 octet). Also, 8-bit central processing unit (CPU) and arithmetic logic unit (ALU) architectures are those that are based on registers or data buses of that size. Memory addresses (and thus address buses) for 8-bit CPUs are generally larger than 8-bit, usually 16-bit. 8-bit microcomputers are microcomputers that use 8-bit microprocessors. The term '8-bit' is also applied to the character sets that could be used on computers with 8-bit bytes, the best known being various forms of extended ASCII, including the ISO/IEC 8859 series of national character sets especially Latin 1 for English and Western European languages. The IBM System/360 introduced byte-addressable memory with 8-bit bytes, as opposed to bit-addressable or decimal digit-addressable or word-addressable memory, although its general-purpose registers were 32 bits wide, and addresses were contained in the lower 24 bits o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hexadecimal
Hexadecimal (also known as base-16 or simply hex) is a Numeral system#Positional systems in detail, positional numeral system that represents numbers using a radix (base) of sixteen. Unlike the decimal system representing numbers using ten symbols, hexadecimal uses sixteen distinct symbols, most often the symbols "0"–"9" to represent values 0 to 9 and "A"–"F" to represent values from ten to fifteen. Software developers and system designers widely use hexadecimal numbers because they provide a convenient representation of binary code, binary-coded values. Each hexadecimal digit represents four bits (binary digits), also known as a nibble (or nybble). For example, an 8-bit byte is two hexadecimal digits and its value can be written as to in hexadecimal. In mathematics, a subscript is typically used to specify the base. For example, the decimal value would be expressed in hexadecimal as . In programming, several notations denote hexadecimal numbers, usually involving a prefi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Opcode Prefix
In computing, an opcode prefix is an numeric value that alters the function of a following opcode. On some instruction set architectures multiple opcode prefixes are allowed sequentially, with all combining to alter the subsequent opcode. The opcode prefix is a portion of a larger machine language instruction that specifies the operation to be performed. In addition to the opcode, some instructions specify the operands the operation will act upon. Opcode prefixes may alter the number or size of the operands. RISC processors do not use opcode prefixes. Types of prefixes Opcode prefixes generally fall into two categories: # Opcode prefixes that alter subsequent opcode functions. # Opcode prefixes that enable an alternate set of opcodes. This is analogous to the shift key on a keyboard. In this way, instruction sets can be extended by adding a subset of new instructions by reusing existing reserved opcodes. Example opcode prefixes The following is not intended to be an exhaustiv ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Index Register
An index register in a computer's central processing unit, CPU is a processor register (or an assigned memory location) used for pointing to operand addresses during the run of a program. It is useful for stepping through String (computer science), strings and Array data structure, arrays. It can also be used for holding loop iterations and counters. In some Instruction set architecture, architectures it is used for read/writing blocks of memory. Depending on the architecture it may be a dedicated index register or a general-purpose register. Some instruction sets allow more than one index register to be used; in that case additional instruction fields may specify which index registers to use. Generally, the contents of an index register is added to (in some cases subtracted from) an ''immediate'' address (that can be part of the instruction itself or held in another register) to form the "effective" address of the actual data (operand). Special instructions are typically provided ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Backward Compatible
In telecommunications and computing, backward compatibility (or backwards compatibility) is a property of an operating system, software, real-world product, or technology that allows for interoperability with an older legacy system, or with input designed for such a system. Modifying a system in a way that does not allow backward compatibility is sometimes called " breaking" backward compatibility. Such breaking usually incurs various types of costs, such as switching cost. A complementary concept is '' forward compatibility''; a design that is forward-compatible usually has a roadmap for compatibility with future standards and products. Usage In hardware A simple example of both backward and forward compatibility is the introduction of FM radio in stereo. FM radio was initially mono, with only one audio channel represented by one signal. With the introduction of two-channel stereo FM radio, many listeners had only mono FM receivers. Forward compatibility for mono receivers w ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Instruction Set
In computer science, an instruction set architecture (ISA) is an abstract model that generally defines how software controls the CPU in a computer or a family of computers. A device or program that executes instructions described by that ISA, such as a central processing unit (CPU), is called an ''implementation'' of that ISA. In general, an ISA defines the supported Machine code, instructions, data types, Register (computer), registers, the hardware support for managing Computer memory, main memory, fundamental features (such as the memory consistency, addressing modes, virtual memory), and the input/output model of implementations of the ISA. An ISA specifies the behavior of machine code running on implementations of that ISA in a fashion that does not depend on the characteristics of that implementation, providing binary compatibility between implementations. This enables multiple implementations of an ISA that differ in characteristics such as Computer performance, performa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]