Formation Rules
In mathematical logic, formation rules are rules for describing well-formed words over the alphabet of a formal language. These rules only address the location and manipulation of the strings of the language. It does not describe anything else about a language, such as its semantics (i.e. what the strings mean). (See also formal grammar). Formal language A ''formal language'' is an organized set of symbols the essential feature being that it can be precisely defined in terms of just the shapes and locations of those symbols. Such a language can be defined, then, without any reference to any meanings of any of its expressions; it can exist before any interpretation is assigned to it—that is, before it has any meaning. A formal grammar determines which symbols and sets of symbols are formulas in a formal language. Formal systems A ''formal system'' (also called a ''logical calculus'', or a ''logical system'') consists of a formal language together with a deductive appara ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematical Logic
Mathematical logic is the study of Logic#Formal logic, formal logic within mathematics. Major subareas include model theory, proof theory, set theory, and recursion theory (also known as computability theory). Research in mathematical logic commonly addresses the mathematical properties of formal systems of logic such as their expressive or deductive power. However, it can also include uses of logic to characterize correct mathematical reasoning or to establish foundations of mathematics. Since its inception, mathematical logic has both contributed to and been motivated by the study of foundations of mathematics. This study began in the late 19th century with the development of axiomatic frameworks for geometry, arithmetic, and Mathematical analysis, analysis. In the early 20th century it was shaped by David Hilbert's Hilbert's program, program to prove the consistency of foundational theories. Results of Kurt Gödel, Gerhard Gentzen, and others provided partial resolution to th ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Axiom
An axiom, postulate, or assumption is a statement that is taken to be true, to serve as a premise or starting point for further reasoning and arguments. The word comes from the Ancient Greek word (), meaning 'that which is thought worthy or fit' or 'that which commends itself as evident'. The precise definition varies across fields of study. In classic philosophy, an axiom is a statement that is so evident or well-established, that it is accepted without controversy or question. In modern logic, an axiom is a premise or starting point for reasoning. In mathematics, an ''axiom'' may be a " logical axiom" or a " non-logical axiom". Logical axioms are taken to be true within the system of logic they define and are often shown in symbolic form (e.g., (''A'' and ''B'') implies ''A''), while non-logical axioms are substantive assertions about the elements of the domain of a specific mathematical theory, for example ''a'' + 0 = ''a'' in integer arithmetic. N ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Rules
Rule or ruling may refer to: Human activity * The exercise of political or personal control by someone with authority or power * Business rule, a rule pertaining to the structure or behavior internal to a business * School rule, a rule that is part of school discipline * Sport rule, a rule that defines how a sport is played * Game rule, a rule that defines how a game is played * Morality, a rule or element of a moral code for guiding choices in human behavior * Norm (philosophy), a kind of sentence or a reason to act, feel or believe * Social norm, explicit or implicit rules used within society or by a group * Rule of thumb, a principle with broad application that is not intended to be strictly accurate or reliable for every situation * Unspoken rule, an assumed rule of human behavior that is not voiced or written down Science * Ruler or "rule"; a distance measuring device * Slide rule, a mechanical analog computer * Rule of inference or transformation rule, a term in log ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Predicate Logic
First-order logic, also called predicate logic, predicate calculus, or quantificational logic, is a collection of formal systems used in mathematics, philosophy, linguistics, and computer science. First-order logic uses quantified variables over non-logical objects, and allows the use of sentences that contain variables. Rather than propositions such as "all humans are mortal", in first-order logic one can have expressions in the form "for all ''x'', if ''x'' is a human, then ''x'' is mortal", where "for all ''x"'' is a quantifier, ''x'' is a variable, and "... ''is a human''" and "... ''is mortal''" are predicates. This distinguishes it from propositional logic, which does not use quantifiers or relations; in this sense, propositional logic is the foundation of first-order logic. A theory about a topic, such as set theory, a theory for groups,A. Tarski, ''Undecidable Theories'' (1953), p. 77. Studies in Logic and the Foundation of Mathematics, North-Holland or a formal theory ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Propositional Calculus
The propositional calculus is a branch of logic. It is also called propositional logic, statement logic, sentential calculus, sentential logic, or sometimes zeroth-order logic. Sometimes, it is called ''first-order'' propositional logic to contrast it with System F, but it should not be confused with first-order logic. It deals with propositions (which can be Truth value, true or false) and relations between propositions, including the construction of arguments based on them. Compound propositions are formed by connecting propositions by logical connectives representing the truth functions of Logical conjunction, conjunction, Logical disjunction, disjunction, Material conditional, implication, Logical biconditional, biconditional, and negation. Some sources include other connectives, as in the table below. Unlike first-order logic, propositional logic does not deal with non-logical objects, predicates about them, or Quantifier (logic), quantifiers. However, all the machinery of pr ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Formal Languages
In logic, mathematics, computer science, and linguistics, a formal language is a set of string (computer science), strings whose symbols are taken from a set called "#Definition, alphabet". The alphabet of a formal language consists of symbols that concatenate into strings (also called "words"). Words that belong to a particular formal language are sometimes called Formal language#Definition, ''well-formed words''. A formal language is often defined by means of a formal grammar such as a regular grammar or context-free grammar. In computer science, formal languages are used, among others, as the basis for defining the grammar of programming languages and formalized versions of subsets of natural languages, in which the words of the language represent concepts that are associated with meanings or semantics. In computational complexity theory, decision problems are typically defined as formal languages, and complexity classes are defined as the sets of the formal languages that ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Finite-state Automaton
A finite-state machine (FSM) or finite-state automaton (FSA, plural: ''automata''), finite automaton, or simply a state machine, is a mathematical model of computation. It is an abstract machine that can be in exactly one of a finite number of ''states'' at any given time. The FSM can change from one state to another in response to some inputs; the change from one state to another is called a ''transition''. An FSM is defined by a list of its states, its initial state, and the inputs that trigger each transition. Finite-state machines are of two types— deterministic finite-state machines and non-deterministic finite-state machines. For any non-deterministic finite-state machine, an equivalent deterministic one can be constructed. The behavior of state machines can be observed in many devices in modern society that perform a predetermined sequence of actions depending on a sequence of events with which they are presented. Simple examples are: vending machines, which dispens ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Variable (mathematics)
In mathematics, a variable (from Latin language, Latin ) is a Mathematical symbol, symbol, typically a letter, that refers to an unspecified mathematical object. One says colloquially that the variable ''represents'' or ''denotes'' the object, and that any valid candidate for the object is the value (mathematics), value of the variable. The values a variable can take are usually of the same kind, often numbers. More specifically, the values involved may form a Set (mathematics), set, such as the set of real numbers. The object may not always exist, or it might be uncertain whether any valid candidate exists or not. For example, one could represent two integers by the variables and and require that the value of the square of is twice the square of , which in algebraic notation can be written . A definitive proof that this relationship is impossible to satisfy when and are restricted to integer numbers isn't obvious, but it has been known since ancient times and has had a big ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Quantifiers (logic)
In logic, a quantifier is an operator that specifies how many individuals in the domain of discourse satisfy an open formula. For instance, the universal quantifier \forall in the first-order formula \forall x P(x) expresses that everything in the domain satisfies the property denoted by P. On the other hand, the existential quantifier \exists in the formula \exists x P(x) expresses that there exists something in the domain which satisfies that property. A formula where a quantifier takes widest scope is called a quantified formula. A quantified formula must contain a bound variable and a subformula specifying a property of the referent of that variable. The most commonly used quantifiers are \forall and \exists. These quantifiers are standardly defined as duals; in classical logic: each can be defined in terms of the other using negation. They can also be used to define more complex quantifiers, as in the formula \neg \exists x P(x) which expresses that nothing h ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Predicate Calculus
{{disambiguation ...
Predicate or predication may refer to: * Predicate (grammar), in linguistics * Predication (philosophy) * several closely related uses in mathematics and formal logic: **Predicate (mathematical logic) ** Propositional function **Finitary relation, or n-ary predicate ** Boolean-valued function ** Syntactic predicate, in formal grammars and parsers **Functional predicate * Predication (computer architecture) *in United States law, the basis or foundation of something ** Predicate crime **Predicate rules, in the U.S. Title 21 CFR Part 11 * Predicate, a term used in some European context for either nobles' honorifics or for nobiliary particles See also * Predicate logic First-order logic, also called predicate logic, predicate calculus, or quantificational logic, is a collection of formal systems used in mathematics, philosophy, linguistics, and computer science. First-order logic uses quantified variables ove ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Propositional Calculus
The propositional calculus is a branch of logic. It is also called propositional logic, statement logic, sentential calculus, sentential logic, or sometimes zeroth-order logic. Sometimes, it is called ''first-order'' propositional logic to contrast it with System F, but it should not be confused with first-order logic. It deals with propositions (which can be Truth value, true or false) and relations between propositions, including the construction of arguments based on them. Compound propositions are formed by connecting propositions by logical connectives representing the truth functions of Logical conjunction, conjunction, Logical disjunction, disjunction, Material conditional, implication, Logical biconditional, biconditional, and negation. Some sources include other connectives, as in the table below. Unlike first-order logic, propositional logic does not deal with non-logical objects, predicates about them, or Quantifier (logic), quantifiers. However, all the machinery of pr ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Proof Theory
Proof theory is a major branchAccording to , proof theory is one of four domains mathematical logic, together with model theory, axiomatic set theory, and recursion theory. consists of four corresponding parts, with part D being about "Proof Theory and Constructive Mathematics". of mathematical logic and theoretical computer science within which proofs are treated as formal mathematical objects, facilitating their analysis by mathematical techniques. Proofs are typically presented as inductively defined data structures such as lists, boxed lists, or trees, which are constructed according to the axioms and rules of inference of a given logical system. Consequently, proof theory is syntactic in nature, in contrast to model theory, which is semantic in nature. Some of the major areas of proof theory include structural proof theory, ordinal analysis, provability logic, reverse mathematics, proof mining, automated theorem proving, and proof complexity. Much research also ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |