HOME





Fano Varieties
In algebraic geometry, a Fano variety, introduced by Gino Fano , is an algebraic variety that generalizes certain aspects of complete intersections of algebraic hypersurfaces whose sum of degrees is at most the total dimension of the ambient projective space. Such complete intersections have important applications in geometry and number theory, because they typically admit rational points, an elementary case of which is the Chevalley–Warning theorem. Fano varieties provide an abstract generalization of these basic examples for which rationality questions are often still tractable. Formally, a Fano variety is a complete variety ''X'' whose anticanonical bundle ''K''X* is ample. In this definition, one could assume that ''X'' is smooth over a field, but the minimal model program has also led to the study of Fano varieties with various types of singularities, such as terminal or klt singularities. Recently techniques in differential geometry have been applied to the study of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algebraic Geometry
Algebraic geometry is a branch of mathematics which uses abstract algebraic techniques, mainly from commutative algebra, to solve geometry, geometrical problems. Classically, it studies zero of a function, zeros of multivariate polynomials; the modern approach generalizes this in a few different aspects. The fundamental objects of study in algebraic geometry are algebraic variety, algebraic varieties, which are geometric manifestations of solution set, solutions of systems of polynomial equations. Examples of the most studied classes of algebraic varieties are line (geometry), lines, circles, parabolas, ellipses, hyperbolas, cubic curves like elliptic curves, and quartic curves like lemniscate of Bernoulli, lemniscates and Cassini ovals. These are plane algebraic curves. A point of the plane lies on an algebraic curve if its coordinates satisfy a given polynomial equation. Basic questions involve the study of points of special interest like singular point of a curve, singular p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Kähler–Einstein Metric
In differential geometry, a Kähler–Einstein metric on a complex manifold is a Riemannian metric that is both a Kähler metric and an Einstein metric. A manifold is said to be Kähler–Einstein if it admits a Kähler–Einstein metric. The most important special case of these are the Calabi–Yau manifolds, which are Kähler and Ricci-flat. The most important problem for this area is the existence of Kähler–Einstein metrics for compact Kähler manifolds. This problem can be split up into three cases dependent on the sign of the first Chern class of the Kähler manifold: * When the first Chern class is negative, there is always a Kähler–Einstein metric, as Thierry Aubin and Shing-Tung Yau proved independently. * When the first Chern class is zero, there is always a Kähler–Einstein metric, as Yau proved in the Calabi conjecture. That leads to the name Calabi–Yau manifolds. He was awarded with the Fields Medal partly because of this work. * The third case, the p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Sheaf Cohomology
In mathematics, sheaf cohomology is the application of homological algebra to analyze the global sections of a sheaf on a topological space. Broadly speaking, sheaf cohomology describes the obstructions (holes) to solving a geometric problem globally when it can be solved locally. The central work for the study of sheaf cohomology is Grothendieck's 1957 Tôhoku paper. Sheaves, sheaf cohomology, and spectral sequences were introduced by Jean Leray at the prisoner-of-war camp Oflag XVII-A in Austria. From 1940 to 1945, Leray and other prisoners organized a "université en captivité" in the camp. Leray's definitions were simplified and clarified in the 1950s. It became clear that sheaf cohomology was not only a new approach to cohomology in algebraic topology, but also a powerful method in complex analytic geometry and algebraic geometry. These subjects often involve constructing global functions with specified local properties, and sheaf cohomology is ideally suited to such ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Kodaira Vanishing Theorem
In mathematics, the Kodaira vanishing theorem is a basic result of complex manifold theory and complex algebraic geometry, describing general conditions under which sheaf cohomology groups with indices ''q'' > 0 are automatically zero. The implications for the group with index ''q'' = 0 is usually that its dimension — the number of independent global sections — coincides with a holomorphic Euler characteristic that can be computed using the Hirzebruch–Riemann–Roch theorem. The complex analytic case The statement of Kunihiko Kodaira's result is that if ''M'' is a compact Kähler manifold of complex dimension ''n'', ''L'' any holomorphic line bundle on ''M'' that is positive, and ''KM'' is the canonical line bundle, then ::: H^q(M, K_M\otimes L) = 0 for ''q'' > 0. Here K_M\otimes L stands for the tensor product of line bundles. By means of Serre duality, one also obtains the vanishing of H^q(M, L^) for ''q''  ''n''. The algebraic case The Kodaira van ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Projective Variety
In algebraic geometry, a projective variety is an algebraic variety that is a closed subvariety of a projective space. That is, it is the zero-locus in \mathbb^n of some finite family of homogeneous polynomials that generate a prime ideal, the defining ideal of the variety. A projective variety is a projective curve if its dimension is one; it is a projective surface if its dimension is two; it is a projective hypersurface if its dimension is one less than the dimension of the containing projective space; in this case it is the set of zeros of a single homogeneous polynomial. If ''X'' is a projective variety defined by a homogeneous prime ideal ''I'', then the quotient ring :k _0, \ldots, x_nI is called the homogeneous coordinate ring of ''X''. Basic invariants of ''X'' such as the degree and the dimension can be read off the Hilbert polynomial of this graded ring. Projective varieties arise in many ways. They are complete, which roughly can be expressed by saying t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Linear Algebraic Group
In mathematics, a linear algebraic group is a subgroup of the group of invertible n\times n matrices (under matrix multiplication) that is defined by polynomial equations. An example is the orthogonal group, defined by the relation M^TM = I_n where M^T is the transpose of M. Many Lie groups can be viewed as linear algebraic groups over the field of real or complex numbers. (For example, every compact Lie group can be regarded as a linear algebraic group over R (necessarily R-anisotropic and reductive), as can many noncompact groups such as the simple Lie group SL(''n'',R).) The simple Lie groups were classified by Wilhelm Killing and Élie Cartan in the 1880s and 1890s. At that time, no special use was made of the fact that the group structure can be defined by polynomials, that is, that these are algebraic groups. The founders of the theory of algebraic groups include Maurer, Chevalley, and . In the 1950s, Armand Borel constructed much of the theory of algebraic groups ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Characteristic (algebra)
In mathematics, the characteristic of a ring , often denoted , is defined to be the smallest positive number of copies of the ring's multiplicative identity () that will sum to the additive identity (). If no such number exists, the ring is said to have characteristic zero. That is, is the smallest positive number such that: : \underbrace_ = 0 if such a number exists, and otherwise. Motivation The special definition of the characteristic zero is motivated by the equivalent definitions characterized in the next section, where the characteristic zero is not required to be considered separately. The characteristic may also be taken to be the exponent of the ring's additive group, that is, the smallest positive integer such that: : \underbrace_ = 0 for every element of the ring (again, if exists; otherwise zero). This definition applies in the more general class of rngs (see '); for (unital) rings the two definitions are equivalent due to their distributive law. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Weighted Projective Space
In algebraic geometry, a weighted projective space P(''a''0,...,''a''''n'') is the projective variety Proj(''k'' 'x''0,...,''x''''n'' associated to the graded ring ''k'' 'x''0,...,''x''''n''where the variable ''x''''k'' has degree ''a''''k''. Properties *If ''d'' is a positive integer then P(''a''0,''a''1,...,''a''''n'') is isomorphic to P(''da''0,''da''1,...,''da''''n''). This is a property of the Proj construction; geometrically it corresponds to the ''d''-tuple Veronese embedding. So without loss of generality one may assume that the degrees ''a''''i'' have no common factor. *Suppose that ''a''''0'',''a''''1'',...,''a''''n'' have no common factor, and that ''d'' is a common factor of all the ''a''i with ''i''≠''j'', then P(''a''0,''a''1,...,''a''''n'') is isomorphic to P(''a''0/d,...,''a''j-1/d,''a''j,''a''j+1/d,...,''a''''n''/d) (note that ''d'' is coprime to ''a''''j''; otherwise the isomorphism does not hold). So one may further assume that any set of ''n'' variables ''a'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Adjunction Formula
In mathematics, especially in algebraic geometry and the theory of complex manifolds, the adjunction formula relates the canonical bundle of a variety and a hypersurface inside that variety. It is often used to deduce facts about varieties embedded in well-behaved spaces such as projective space or to prove theorems by induction. Adjunction for smooth varieties Formula for a smooth subvariety Let ''X'' be a smooth algebraic variety or smooth complex manifold and ''Y'' be a smooth subvariety of ''X''. Denote the inclusion map by ''i'' and the ideal sheaf of ''Y'' in ''X'' by \mathcal. The conormal exact sequence for ''i'' is :0 \to \mathcal/\mathcal^2 \to i^*\Omega_X \to \Omega_Y \to 0, where Ω denotes a cotangent bundle. The determinant of this exact sequence is a natural isomorphism :\omega_Y = i^*\omega_X \otimes \operatorname(\mathcal/\mathcal^2)^\vee, where \vee denotes the dual of a line bundle. The particular case of a smooth divisor Suppose that ''D'' is a smooth div ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Curvature
In mathematics, curvature is any of several strongly related concepts in geometry that intuitively measure the amount by which a curve deviates from being a straight line or by which a surface deviates from being a plane. If a curve or surface is contained in a larger space, curvature can be defined ''extrinsically'' relative to the ambient space. Curvature of Riemannian manifolds of dimension at least two can be defined ''intrinsically'' without reference to a larger space. For curves, the canonical example is that of a circle, which has a curvature equal to the reciprocal of its radius. Smaller circles bend more sharply, and hence have higher curvature. The curvature ''at a point'' of a differentiable curve is the curvature of its osculating circle — that is, the circle that best approximates the curve near this point. The curvature of a straight line is zero. In contrast to the tangent, which is a vector quantity, the curvature at a point is typically a scalar q ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Very Ample
In mathematics, a distinctive feature of algebraic geometry is that some line bundles on a projective variety can be considered "positive", while others are "negative" (or a mixture of the two). The most important notion of positivity is that of an ample line bundle, although there are several related classes of line bundles. Roughly speaking, positivity properties of a line bundle are related to having many global sections. Understanding the ample line bundles on a given variety X amounts to understanding the different ways of mapping X into projective spaces. In view of the correspondence between line bundles and divisors (built from codimension-1 subvarieties), there is an equivalent notion of an ample divisor. In more detail, a line bundle is called basepoint-free if it has enough sections to give a morphism to projective space. A line bundle is semi-ample if some positive power of it is basepoint-free; semi-ampleness is a kind of "nonnegativity". More strongly, a line bundl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]