HOME





F. And M. Riesz Theorem
In mathematics, the F. and M. Riesz theorem is a result of the brothers Frigyes Riesz and Marcel Riesz, on analytic measures. It states that for a measure μ on the circle, any part of μ that is not absolutely continuous with respect to the Lebesgue measure ''d''θ can be detected by means of Fourier coefficients. More precisely, it states that if the Fourier–Stieltjes coefficients of \mu satisfy :\hat\mu_n=\int_0^^\frac=0,\ for all n<0, then μ is absolutely continuous with respect to ''d''θ. The original statements are rather different (see Zygmund, '''', VII.8). The formulation here is as in , ''Real and Complex Analysis'', p.{{sp335. The proof given uses the

picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Frigyes Riesz
Frigyes Riesz (, , sometimes known in English and French as Frederic Riesz; 22 January 1880 – 28 February 1956) was a HungarianEberhard Zeidler: Nonlinear Functional Analysis and Its Applications: Linear monotone operators. Springer, 199/ref> mathematician who made fundamental contributions to functional analysis, as did his younger brother Marcel Riesz. Life and career He was born into a Jewish family in Győr, Austria-Hungary and died in Budapest, Hungary. Between 1911 and 1919 he was a professor at the Franz Joseph University in Kolozsvár, Austria-Hungary. The post-WW1 Treaty of Trianon transferred former Austro-Hungarian territory including Kolozsvár to the Kingdom of Romania, whereupon Kolozsvár's name changed to Cluj and the University of Kolozsvár moved to Szeged, Hungary, becoming the University of Szeged. Then, Riesz was the rector and a professor at the University of Szeged, as well as a member of the Hungarian Academy of Sciences. and the Polish Academ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Marcel Riesz
Marcel Riesz ( ; 16 November 1886 – 4 September 1969) was a Hungarian mathematician, known for work on summation methods, potential theory, and other parts of analysis, as well as number theory, partial differential equations, and Clifford algebras. He spent most of his career in Lund, Sweden. Marcel is the younger brother of Frigyes Riesz, who was also an important mathematician and at times they worked together (see F. and M. Riesz theorem). Biography Marcel Riesz was born in Győr, Austria-Hungary. He was the younger brother of the mathematician Frigyes Riesz. In 1904, he won the Loránd Eötvös competition. Upon entering the Budapest University, he also studied in Göttingen, and the academic year 1910-11 he spent in Paris. Earlier, in 1908, he attended the 1908 International Congress of Mathematicians in Rome. There he met Gösta Mittag-Leffler, in three years, Mittag-Leffler would offer Riesz to come to Sweden. Riesz obtained his PhD at Eötvös Loránd Universit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Measure (mathematics)
In mathematics, the concept of a measure is a generalization and formalization of geometrical measures (length, area, volume) and other common notions, such as magnitude, mass, and probability of events. These seemingly distinct concepts have many similarities and can often be treated together in a single mathematical context. Measures are foundational in probability theory, integration theory, and can be generalized to assume negative values, as with electrical charge. Far-reaching generalizations (such as spectral measures and projection-valued measures) of measure are widely used in quantum physics and physics in general. The intuition behind this concept dates back to Ancient Greece, when Archimedes tried to calculate the area of a circle. But it was not until the late 19th and early 20th centuries that measure theory became a branch of mathematics. The foundations of modern measure theory were laid in the works of Émile Borel, Henri Lebesgue, Nikolai Luzin, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Circle
A circle is a shape consisting of all point (geometry), points in a plane (mathematics), plane that are at a given distance from a given point, the Centre (geometry), centre. The distance between any point of the circle and the centre is called the radius. The length of a line segment connecting two points on the circle and passing through the centre is called the diameter. A circle bounds a region of the plane called a Disk (mathematics), disc. The circle has been known since before the beginning of recorded history. Natural circles are common, such as the full moon or a slice of round fruit. The circle is the basis for the wheel, which, with related inventions such as gears, makes much of modern machinery possible. In mathematics, the study of the circle has helped inspire the development of geometry, astronomy and calculus. Terminology * Annulus (mathematics), Annulus: a ring-shaped object, the region bounded by two concentric circles. * Circular arc, Arc: any Connected ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Absolutely Continuous
In calculus and real analysis, absolute continuity is a smoothness property of functions that is stronger than continuity and uniform continuity. The notion of absolute continuity allows one to obtain generalizations of the relationship between the two central operations of calculus— differentiation and integration. This relationship is commonly characterized (by the fundamental theorem of calculus) in the framework of Riemann integration, but with absolute continuity it may be formulated in terms of Lebesgue integration. For real-valued functions on the real line, two interrelated notions appear: absolute continuity of functions and absolute continuity of measures. These two notions are generalized in different directions. The usual derivative of a function is related to the '' Radon–Nikodym derivative'', or ''density'', of a measure. We have the following chains of inclusions for functions over a compact subset of the real line: : ''absolutely continuous'' ⊆ '' u ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Lebesgue Measure
In measure theory, a branch of mathematics, the Lebesgue measure, named after French mathematician Henri Lebesgue, is the standard way of assigning a measure to subsets of higher dimensional Euclidean '-spaces. For lower dimensions or , it coincides with the standard measure of length, area, or volume. In general, it is also called '-dimensional volume, '-volume, hypervolume, or simply volume. It is used throughout real analysis, in particular to define Lebesgue integration. Sets that can be assigned a Lebesgue measure are called Lebesgue-measurable; the measure of the Lebesgue-measurable set A is here denoted by \lambda(A). Henri Lebesgue described this measure in the year 1901 which, a year after, was followed up by his description of the Lebesgue integral. Both were published as part of his dissertation in 1902. Definition For any interval I = ,b/math>, or I = (a, b), in the set \mathbb of real numbers, let \ell(I)= b - a denote its length. For any subset E\subseteq ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fourier Coefficient
A Fourier series () is an expansion of a periodic function into a sum of trigonometric functions. The Fourier series is an example of a trigonometric series. By expressing a function as a sum of sines and cosines, many problems involving the function become easier to analyze because trigonometric functions are well understood. For example, Fourier series were first used by Joseph Fourier to find solutions to the heat equation. This application is possible because the derivatives of trigonometric functions fall into simple patterns. Fourier series cannot be used to approximate arbitrary functions, because most functions have infinitely many terms in their Fourier series, and the series do not always converge. Well-behaved functions, for example smooth functions, have Fourier series that converge to the original function. The coefficients of the Fourier series are determined by integrals of the function multiplied by trigonometric functions, described in . The study of the converg ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Trigonometric Series
In mathematics, trigonometric series are a special class of orthogonal series of the form : A_0 + \sum_^\infty A_n \cos + B_n \sin, where x is the variable and \ and \ are coefficients. It is an infinite version of a trigonometric polynomial. A trigonometric series is called the Fourier series of the integrable function f if the coefficients have the form: :A_n=\frac1\pi \int^_0\! f(x) \cos \,dx :B_n=\frac\displaystyle\int^_0\! f(x) \sin \, dx Examples Every Fourier series gives an example of a trigonometric series. Let the function f(x) = x on \pi,\pi/math> be extended periodically (see sawtooth wave). Then its Fourier coefficients are: :\begin A_n &= \frac1\pi\int_^ x \cos \,dx = 0, \quad n \ge 0. \\ ptB_n &= \frac1\pi\int_^ x \sin \, dx \\ pt&= -\frac \cos + \frac1\sin \Bigg\vert_^\pi \\ mu&= \frac, \quad n \ge 1.\end Which gives an example of a trigonometric series: :2\sum_^\infty \frac \sin = 2\sin - \frac22\sin + \frac23\sin - \frac24\sin + \cdots However ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Walter Rudin
Walter Rudin (May 2, 1921 – May 20, 2010) was an Austrian- American mathematician and professor of mathematics at the University of Wisconsin–Madison. In addition to his contributions to complex and harmonic analysis, Rudin was known for his mathematical analysis textbooks: '' Principles of Mathematical Analysis'', ''Real and Complex Analysis'', and ''Functional Analysis.'' Rudin wrote ''Principles of Mathematical Analysis'' only two years after obtaining his Ph.D. from Duke University, while he was a C. L. E. Moore Instructor at MIT. ''Principles'', acclaimed for its elegance and clarity, has since become a standard textbook for introductory real analysis courses in the United States. Rudin's analysis textbooks have also been influential in mathematical education worldwide, having been translated into 13 languages, including Russian, Chinese, and Spanish. Biography Rudin was born into a Jewish family in Austria in 1921. He was enrolled for a period of time at a Swiss bo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Poisson Kernel
In mathematics, and specifically in potential theory, the Poisson kernel is an integral kernel, used for solving the two-dimensional Laplace equation, given Dirichlet boundary conditions on the unit disk. The kernel can be understood as the derivative of the Green's function for the Laplace equation. It is named for Siméon Poisson. Poisson kernels commonly find applications in control theory and two-dimensional problems in electrostatics. In practice, the definition of Poisson kernels are often extended to ''n''-dimensional problems. Two-dimensional Poisson kernels On the unit disc In the complex plane, the Poisson kernel for the unit disc is given by P_r(\theta) = \sum_^\infty r^e^ = \frac = \operatorname\left(\frac\right), \ \ \ 0 \le r < 1. This can be thought of in two ways: either as a function of ''r'' and ''θ'', or as a family of functions of ''θ'' indexed by ''r''. If D = \ is the open unit disc in C, T is the boundary of the disc, and ''f'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hardy Space
In complex analysis, the Hardy spaces (or Hardy classes) H^p are spaces of holomorphic functions on the unit disk or upper half plane. They were introduced by Frigyes Riesz , who named them after G. H. Hardy, because of the paper . In real analysis Hardy spaces are spaces of distributions on the real -space \mathbb^n, defined (in the sense of distributions) as boundary values of the holomorphic functions. Hardy spaces are related to the ''Lp'' spaces. For 1 \leq p < \infty these Hardy spaces are s of L^p spaces, while for 0 the L^p spaces have some undesirable properties, and the Hardy spaces are much better behaved. Hence, H^p spaces can be considered extensions of L^p spaces. Hardy spaces have a number of ...
[...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]