HOME





Marcel Riesz
Marcel Riesz ( hu, Riesz Marcell ; 16 November 1886 – 4 September 1969) was a Hungarian mathematician, known for work on summation methods, potential theory, and other parts of analysis, as well as number theory, partial differential equations, and Clifford algebras. He spent most of his career in Lund ( Sweden). Marcel is the younger brother of Frigyes Riesz, who was also an important mathematician and at times they worked together (see F. and M. Riesz theorem). Biography Marcel Riesz was born in Győr, Austria-Hungary; he was the younger brother of the mathematician Frigyes Riesz. He obtained his PhD at Eötvös Loránd University under the supervision of Lipót Fejér. In 1911, he moved to Sweden upon the invitation of Gösta Mittag-Leffler. From 1911 to 1925 he taught at ''Stockholms högskola'' (now Stockholm University). From 1926 to 1952 he was professor at Lund University. After retiring, he spent 10 years at universities in the United States. He returned to Lund in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Győr
Győr ( , ; german: Raab, links=no; names in other languages) is the main city of northwest Hungary, the capital of Győr-Moson-Sopron County and Western Transdanubia region, and – halfway between Budapest and Vienna – situated on one of the important roads of Central Europe. It is the sixth largest city in Hungary, and one of its seven main regional centres. The city has county rights. History The area along the Danube River has been inhabited by varying cultures since ancient times. The first large settlement dates back to the 5th century BCE; the inhabitants were Celts. They called the town ''Ara Bona'' "Good altar", later contracted to ''Arrabona'', a name which was used until the eighth century. Its shortened form is still used as the German (''Raab'') and Slovak (''Ráb'') names of the city. Roman merchants moved to Arrabona during the 1st century BCE. Around 10 CE, the Roman army occupied the northern part of Western Hungary, which they called ''Pannonia''. Altho ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Riesz Transform
In the mathematical theory of harmonic analysis, the Riesz transforms are a family of generalizations of the Hilbert transform to Euclidean spaces of dimension ''d'' > 1. They are a type of singular integral operator, meaning that they are given by a convolution of one function with another function having a singularity at the origin. Specifically, the Riesz transforms of a complex-valued function ƒ on R''d'' are defined by for ''j'' = 1,2,...,''d''. The constant ''c''''d'' is a dimensional normalization given by :c_d = \frac = \frac. where ω''d''−1 is the volume of the unit (''d'' − 1)-ball. The limit is written in various ways, often as a principal value, or as a convolution with the tempered distribution :K(x) = \frac \, p.v. \frac. The Riesz transforms arises in the study of differentiability properties of harmonic potentials in potential theory and harmonic analysis. In particular, they arise in the proof of the Calderón-Zyg ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Stockholm University
Stockholm University ( sv, Stockholms universitet) is a public research university in Stockholm, Sweden, founded as a college in 1878, with university status since 1960. With over 33,000 students at four different faculties: law, humanities, social sciences, and natural sciences, it is one of the largest universities in Scandinavia. The institution is regarded as one of the top 100 universities in the world by the Academic Ranking of World Universities (ARWU).http://www.ulinks.com/topuniversities.htm top 200 Stockholm University was granted university status in 1960, making it the fourth oldest Swedish university. As with other public universities in Sweden, Stockholm University's mission includes teaching and research anchored in society at large. History The initiative for the formation of Stockholm University was taken by the Stockholm City Council. The process was completed after a decision in December 1865 regarding the establishment of a fund and a committee to "establ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Gösta Mittag-Leffler
Magnus Gustaf "Gösta" Mittag-Leffler (16 March 1846 – 7 July 1927) was a Swedish mathematician. His mathematical contributions are connected chiefly with the theory of functions, which today is called complex analysis. Biography Mittag-Leffler was born in Stockholm, son of the school principal John Olof Leffler and Gustava Wilhelmina Mittag; he later added his mother's maiden name to his paternal surname. His sister was the writer Anne Charlotte Leffler. He matriculated at Uppsala University in 1865, completed his PhD in 1872 and became docent at the university the same year. He was also curator (chairman) of the Stockholms nation (1872–1873). He next traveled to Paris, Göttingen and Berlin, studying under Weierstrass in the latter place. During this period he edited a weekly newspaper, '' Ny Illustrerad Tidning'', which was based in Stockholm. He then took up a position as professor of mathematics (as successor to Lorenz Lindelöf) at the University of Helsinki from 187 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Eötvös Loránd University
Eötvös Loránd University ( hu, Eötvös Loránd Tudományegyetem, ELTE) is a Hungarian public research university based in Budapest. Founded in 1635, ELTE is one of the largest and most prestigious public higher education institutions in Hungary. The 28,000 students at ELTE are organized into nine faculties, and into research institutes located throughout Budapest and on the scenic banks of the Danube. ELTE is affiliated with 5 Nobel laureates, as well as winners of the Wolf Prize, Fulkerson Prize and Abel Prize, the latest of which was Abel Prize winner László Lovász in 2021. The predecessor of Eötvös Loránd University was founded in 1635 by Cardinal Péter Pázmány in Nagyszombat, Kingdom of Hungary (today Trnava, Slovakia) as a Catholic university for teaching theology and philosophy. In 1770, the university was transferred to Buda. It was named Royal University of Pest until 1873, then University of Budapest until 1921, when it was renamed Royal Hungarian Páz ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Frigyes Riesz
Frigyes Riesz ( hu, Riesz Frigyes, , sometimes spelled as Frederic; 22 January 1880 – 28 February 1956) was a HungarianEberhard Zeidler: Nonlinear Functional Analysis and Its Applications: Linear monotone operators. Springer, 199/ref> mathematician who made fundamental contributions to functional analysis, as did his younger brother Marcel Riesz. Life and career He was born into a Jewish family in Győr, Austria-Hungary and died in Budapest, Hungary. Between 1911 and 1919 he was a professor at the Franz Joseph University in Kolozsvár, Austria-Hungary. The post-WW1 Treaty of Trianon transferred former Austro-Hungarian territory including Kolozsvár to the Kingdom of Romania, whereupon Kolozsvár's name changed to Cluj and the University of Kolozsvár moved to Szeged, Hungary, becoming the University of Szeged. Then, Riesz was the rector and a professor at the University of Szeged, as well as a member of the Hungarian Academy of Sciences. and the Polish Academy of Lea ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Clifford Algebras
In mathematics, a Clifford algebra is an algebra generated by a vector space with a quadratic form, and is a unital associative algebra. As -algebras, they generalize the real numbers, complex numbers, quaternions and several other hypercomplex number systems. The theory of Clifford algebras is intimately connected with the theory of quadratic forms and orthogonal transformations. Clifford algebras have important applications in a variety of fields including geometry, theoretical physics and digital image processing. They are named after the English mathematician William Kingdon Clifford. The most familiar Clifford algebras, the orthogonal Clifford algebras, are also referred to as (''pseudo-'')''Riemannian Clifford algebras'', as distinct from ''symplectic Clifford algebras''.see for ex. Introduction and basic properties A Clifford algebra is a unital associative algebra that contains and is generated by a vector space over a field , where is equipped with a quadratic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Partial Differential Equations
In mathematics, a partial differential equation (PDE) is an equation which imposes relations between the various partial derivatives of a multivariable function. The function is often thought of as an "unknown" to be solved for, similarly to how is thought of as an unknown number to be solved for in an algebraic equation like . However, it is usually impossible to write down explicit formulas for solutions of partial differential equations. There is, correspondingly, a vast amount of modern mathematical and scientific research on methods to numerically approximate solutions of certain partial differential equations using computers. Partial differential equations also occupy a large sector of pure mathematical research, in which the usual questions are, broadly speaking, on the identification of general qualitative features of solutions of various partial differential equations, such as existence, uniqueness, regularity, and stability. Among the many open questions are the e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Number Theory
Number theory (or arithmetic or higher arithmetic in older usage) is a branch of pure mathematics devoted primarily to the study of the integers and integer-valued functions. German mathematician Carl Friedrich Gauss (1777–1855) said, "Mathematics is the queen of the sciences—and number theory is the queen of mathematics."German original: "Die Mathematik ist die Königin der Wissenschaften, und die Arithmetik ist die Königin der Mathematik." Number theorists study prime numbers as well as the properties of mathematical objects made out of integers (for example, rational numbers) or defined as generalizations of the integers (for example, algebraic integers). Integers can be considered either in themselves or as solutions to equations ( Diophantine geometry). Questions in number theory are often best understood through the study of analytical objects (for example, the Riemann zeta function) that encode properties of the integers, primes or other number-theoretic object ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematical Analysis
Analysis is the branch of mathematics dealing with continuous functions, limit (mathematics), limits, and related theories, such as Derivative, differentiation, Integral, integration, measure (mathematics), measure, infinite sequences, series (mathematics), series, and analytic functions. These theories are usually studied in the context of Real number, real and Complex number, complex numbers and Function (mathematics), functions. Analysis evolved from calculus, which involves the elementary concepts and techniques of analysis. Analysis may be distinguished from geometry; however, it can be applied to any Space (mathematics), space of mathematical objects that has a definition of nearness (a topological space) or specific distances between objects (a metric space). History Ancient Mathematical analysis formally developed in the 17th century during the Scientific Revolution, but many of its ideas can be traced back to earlier mathematicians. Early results in analysis were i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Potential Theory
In mathematics and mathematical physics, potential theory is the study of harmonic functions. The term "potential theory" was coined in 19th-century physics when it was realized that two fundamental forces of nature known at the time, namely gravity and the electrostatic force, could be modeled using functions called the gravitational potential and electrostatic potential, both of which satisfy Poisson's equation—or in the vacuum, Laplace's equation. There is considerable overlap between potential theory and the theory of Poisson's equation to the extent that it is impossible to draw a distinction between these two fields. The difference is more one of emphasis than subject matter and rests on the following distinction: potential theory focuses on the properties of the functions as opposed to the properties of the equation. For example, a result about the singularities of harmonic functions would be said to belong to potential theory whilst a result on how the solution dep ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Divergent Series
In mathematics, a divergent series is an infinite series that is not convergent, meaning that the infinite sequence of the partial sums of the series does not have a finite limit. If a series converges, the individual terms of the series must approach zero. Thus any series in which the individual terms do not approach zero diverges. However, convergence is a stronger condition: not all series whose terms approach zero converge. A counterexample is the harmonic series :1 + \frac + \frac + \frac + \frac + \cdots =\sum_^\infty\frac. The divergence of the harmonic series was proven by the medieval mathematician Nicole Oresme. In specialized mathematical contexts, values can be objectively assigned to certain series whose sequences of partial sums diverge, in order to make meaning of the divergence of the series. A ''summability method'' or ''summation method'' is a partial function from the set of series to values. For example, Cesàro summation assigns Grandi's diverge ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]