HOME



picture info

Elliptical Orbit
In astrodynamics or celestial mechanics, an elliptical orbit or eccentric orbit is an orbit with an orbital eccentricity, eccentricity of less than 1; this includes the special case of a circular orbit, with eccentricity equal to 0. Some orbits have been referred to as "elongated orbits" if the eccentricity is "high" but that is not an explanatory term. For the simple two body problem, all orbits are ellipses. In a gravitational two-body problem, both bodies follow Similarity (geometry), similar elliptical orbits with the same orbital period around their common barycenter. The relative position of one body with respect to the other also follows an elliptic orbit. Examples of elliptic orbits include Hohmann transfer orbits, Molniya orbits, and tundra orbits. Velocity Under standard assumptions, no other forces acting except two spherically symmetrical bodies (m_1) and (m_2), the orbital speed (v\,) of one body traveling along an elliptical orbit can be computed from the vi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Animation Of Orbital Eccentricity
Animation is a filmmaking technique whereby image, still images are manipulated to create Motion picture, moving images. In traditional animation, images are drawn or painted by hand on cel, transparent celluloid sheets to be photographed and exhibited on film. Animation has been recognised as an artistic medium, specifically within the Entertainment#Industry, entertainment industry. Many animations are either traditional animations or computer animations made with computer-generated imagery (CGI). Stop motion animation, in particular claymation, has continued to exist alongside these other forms. Animation is contrasted with live action, although the two do not exist in isolation. Many moviemakers have produced Live-action animation, films that are a hybrid of the two. As CGI increasingly Photorealism, approximates photographic imagery, filmmakers can easily Compositing, composite 3D animations into their film rather than using practical effects for showy visual effects (VFX). ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Orbital Speed
In gravitationally bound systems, the orbital speed of an astronomical body or object (e.g. planet, moon, artificial satellite, spacecraft, or star) is the speed at which it orbits around either the barycenter (the combined center of mass) or, if one body is much more massive than the other bodies of the system combined, its speed relative to the center of mass of the most massive body. The term can be used to refer to either the mean orbital speed (i.e. the average speed over an entire orbit) or its instantaneous speed at a particular point in its orbit. The maximum (instantaneous) orbital speed occurs at periapsis (perigee, perihelion, etc.), while the minimum speed for objects in closed orbits occurs at apoapsis (apogee, aphelion, etc.). In ideal two-body systems, objects in open orbits continue to slow down forever as their distance to the barycenter increases. When a system approximates a two-body system, instantaneous orbital speed at a given point of the orbit can b ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Orbiting Body
In astrodynamics, an orbiting body is any physical body that orbits a more massive one, called the primary body. The orbiting body is properly referred to as the secondary body (m_2), which is less massive than the primary body (m_1). Thus, m_2 m_2. Under standard assumptions in astrodynamics, the barycenter of the two bodies is a focus of both orbits. An orbiting body may be a spacecraft (i.e. an artificial satellite) or a natural satellite, such as a planet, dwarf planet, moon, moonlet, asteroid, or comet. A system of two orbiting bodies is modeled by the Two-Body Problem and a system of three orbiting bodies is modeled by the Three-Body Problem. These problems can be generalized to an N-body problem. While there are a few analytical solutions to the n-body problem, it can be reduced to a 2-body system if the secondary body stays out of other bodies' Sphere of Influence and remains in the primary body's sphere of influence. See also *Barycenter * Double planet *Primary ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Orbit Equation
In astrodynamics, an orbit equation defines the path of orbiting body m_2\,\! around central body m_1\,\! relative to m_1\,\!, without specifying position as a function of time. Under standard assumptions, a body moving under the influence of a force, directed to a central body, with a magnitude inversely proportional to the square of the distance (such as gravity), has an orbit that is a conic section (i.e. circular orbit, elliptic orbit, parabolic trajectory, hyperbolic trajectory, or radial trajectory) with the central body located at one of the two foci, or ''the'' focus ( Kepler's first law). If the conic section intersects the central body, then the actual trajectory can only be the part above the surface, but for that part the orbit equation and many related formulas still apply, as long as it is a freefall (situation of weightlessness). Central, inverse-square law force Consider a two-body system consisting of a central body of mass ''M'' and a much smaller, orbiti ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

True Anomaly
In celestial mechanics, true anomaly is an angular parameter that defines the position of a body moving along a Keplerian orbit. It is the angle between the direction of periapsis and the current position of the body, as seen from the main focus of the ellipse (the point around which the object orbits). The true anomaly is usually denoted by the Greek alphabet, Greek letters or , or the Latin script, Latin letter , and is usually restricted to the range 0–360° (0–2π rad). The true anomaly is one of three angular parameters (''anomalies'') that can be used to define a position along an orbit, the other three being the eccentric anomaly and the mean anomaly. Formulas From state vectors For elliptic orbits, the true anomaly can be calculated from orbital state vectors as: : \nu = \arccos ::(if then replace by ) where: * v is the orbital velocity vector of the orbiting body, * e is the eccentricity vector, * r is the orbital position vector (segment ''FP'' in the fi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Specific Relative Angular Momentum
In celestial mechanics, the specific relative angular momentum (often denoted \vec or \mathbf) of a body is the angular momentum of that body divided by its mass. In the case of two orbiting bodies it is the vector product of their relative position and relative linear momentum, divided by the mass of the body in question. Specific relative angular momentum plays a pivotal role in the analysis of the two-body problem, as it remains constant for a given orbit under ideal conditions. " Specific" in this context indicates angular momentum per unit mass. The SI unit for specific relative angular momentum is square meter per second. Definition The specific relative angular momentum is defined as the cross product of the relative position vector \mathbf and the relative velocity vector \mathbf . \mathbf = \mathbf\times \mathbf = \frac where \mathbf is the angular momentum vector, defined as \mathbf \times m \mathbf. The \mathbf vector is always perpendicular to the instant ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Virial Theorem
In mechanics, the virial theorem provides a general equation that relates the average over time of the total kinetic energy of a stable system of discrete particles, bound by a conservative force (where the work done is independent of path), with that of the total potential energy of the system. Mathematically, the theorem states that \langle T \rangle = -\frac12\,\sum_^N \langle\mathbf_k \cdot \mathbf_k\rangle, where T is the total kinetic energy of the N particles, F_k represents the force on the kth particle, which is located at position , and angle brackets represent the average over time of the enclosed quantity. The word virial for the right-hand side of the equation derives from , the Latin word for "force" or "energy", and was given its technical definition by Rudolf Clausius in 1870. The significance of the virial theorem is that it allows the average total kinetic energy to be calculated even for very complicated systems that defy an exact solution, such as those co ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Central Body
A primary bodyalso called a central body, host body, gravitational primary, or simply primaryis the main physical body of a gravitationally bound, multi-object system. This object constitutes most of that system's mass and will generally be located near the system's barycenter. In the Solar System, the Sun is the primary for all objects that orbit the star. In the same way, the primary of all satellites (be they natural satellites (moons) or artificial ones) is the planet they orbit. The term ''primary'' is often used to avoid specifying whether the object near the barycenter is a planet, a star, or any other astronomical object. In this sense, the word ''primary'' is always used as a noun. The center of mass is the average position of all the objects weighed by mass. The Sun is so massive that the Solar System's barycenter frequently lies very near the Sun's center but owing to the mass and distance of the gas giant planets, the Solar System's barycenter occasionally lies outs ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Vis-viva Equation
In astrodynamics, the ''vis-viva'' equation is one of the equations that model the motion of orbiting bodies. It is the direct result of the principle of conservation of mechanical energy which applies when the only force acting on an object is its own weight which is the gravitational force determined by the product of the mass of the object and the strength of the surrounding gravitational field. '' Vis viva'' (Latin for "living force") is a term from the history of mechanics and this name is given to the orbital equation originally derived by Isaac Newton. It represents the principle that the difference between the total work of the accelerating forces of a system and that of the retarding forces is equal to one half the ''vis viva'' accumulated or lost in the system while the work is being done. Formulation For any Keplerian orbit ( elliptic, parabolic, hyperbolic, or radial), the ''vis-viva'' equation is as follows: v^2 = GM \left( - \right) where: * is the relati ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Specific Orbital Energy
In the gravitational two-body problem, the specific orbital energy \varepsilon (or specific ''vis-viva'' energy) of two orbiting bodies is the constant quotient of their mechanical energy (the sum of their mutual potential energy, \varepsilon_p, and their kinetic energy, \varepsilon_k) to their reduced mass. According to the orbital energy conservation equation (also referred to as ''vis-viva'' equation), it does not vary with time: \begin \varepsilon &= \varepsilon_k + \varepsilon_p \\ &= \frac - \frac = -\frac \frac \left(1 - e^2\right) = -\frac \end where *v is the relative orbital speed; *r is the orbital distance between the bodies; *\mu = (m_1 + m_2) is the sum of the standard gravitational parameters of the bodies; *h is the specific relative angular momentum in the sense of relative angular momentum divided by the reduced mass; *e is the orbital eccentricity; *a is the semi-major axis. It is a kind of specific energy, t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Kepler's Laws Of Planetary Motion
In astronomy, Kepler's laws of planetary motion, published by Johannes Kepler in 1609 (except the third law, which was fully published in 1619), describe the orbits of planets around the Sun. These laws replaced circular orbits and epicycles in the heliocentric theory of Nicolaus Copernicus with elliptical orbits and explained how planetary velocities vary. The three laws state that: # The orbit of a planet is an ellipse with the Sun at one of the two foci. # A line segment joining a planet and the Sun sweeps out equal areas during equal intervals of time. # The square of a planet's orbital period is proportional to the cube of the length of the semi-major axis of its orbit. The elliptical orbits of planets were indicated by calculations of the orbit of Mars. From this, Kepler inferred that other bodies in the Solar System, including those farther away from the Sun, also have elliptical orbits. The second law establishes that when a planet is closer to the Sun, it travels fa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hyperbolic Trajectory
In astrodynamics or celestial mechanics, a hyperbolic trajectory or hyperbolic orbit is the trajectory of any object around a central body with more than enough speed to escape the central object's gravitational pull. The name derives from the fact that according to Newtonian theory such an orbit has the shape of a hyperbola. In more technical terms this can be expressed by the condition that the orbital eccentricity is greater than one. Under simplistic assumptions a body traveling along this trajectory will coast towards infinity, settling to a final excess velocity relative to the central body. Similarly to parabolic trajectories, all hyperbolic trajectories are also escape trajectories. The specific energy of a hyperbolic trajectory orbit is positive. Planetary flybys, used for gravitational slingshots, can be described within the planet's sphere of influence using hyperbolic trajectories. Parameters describing a hyperbolic trajectory Like an elliptical orbit, a hyp ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]