Doubly Periodic Function
In mathematics, a doubly periodic function is a function defined on the complex plane and having two "periods", which are complex numbers ''u'' and ''v'' that are linearly independent as vectors over the field of real numbers. That ''u'' and ''v'' are periods of a function ''ƒ'' means that :f(z + u) = f(z + v) = f(z)\, for all values of the complex number ''z''. The doubly periodic function is thus a two-dimensional extension of the simpler singly periodic function, which repeats itself in a single dimension. Familiar examples of functions with a single period on the real number line include the trigonometric functions like cosine and sine, In the complex plane the exponential function ''e''''z'' is a singly periodic function, with period 2''πi''. Examples As an arbitrary mapping from pairs of reals (or complex numbers) to reals, a doubly periodic function can be constructed with little effort. For example, assume that the periods are 1 and ''i'', so that the repe ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
![]() |
Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
Cauchy–Riemann Equations
In the field of complex analysis in mathematics, the Cauchy–Riemann equations, named after Augustin-Louis Cauchy, Augustin Cauchy and Bernhard Riemann, consist of a system of differential equations, system of two partial differential equations which form a necessary and sufficient condition for a complex function of a complex variable to be complex differentiable. These equations are and where and are real differentiable function#Differentiability in higher dimensions, bivariate differentiable functions. Typically, and are respectively the real part, real and imaginary parts of a complex number, complex-valued function of a single complex variable where and are real variables; and are real differentiable functions of the real variables. Then is complex differentiable at a complex point if and only if the partial derivatives of and satisfy the Cauchy–Riemann equations at that point. A holomorphic function is a complex function that is differentiable at eve ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Dixon Elliptic Functions
In mathematics, the Dixon elliptic functions sm and cm are two elliptic functions (doubly periodic function, doubly periodic meromorphic functions on the complex plane) that map from each regular hexagon in a hexagonal tiling to the whole complex plane. Because these functions satisfy the identity \operatorname^3 z + \operatorname^3 z = 1, as function of a real variable, real functions they parametrize the cubic Fermat curve x^3 + y^3 = 1, just as the trigonometric functions sine and cosine parametrize the unit circle x^2 + y^2 = 1. They were named sm and cm by Alfred Cardew Dixon, Alfred Dixon in 1890, by analogy to the trigonometric functions sine and cosine and the Jacobi elliptic functions sn and cn; Göran Dillner described them earlier in 1873. Definition The functions sm and cm can be defined as the solutions to the initial value problem: :\frac \operatorname z = -\operatorname^2 z,\ \frac \operatorname z = \operatorname^2 z,\ \operatorname(0) = 1,\ \operatorname(0) = ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
![]() |
Lemniscate Elliptic Functions
In mathematics, the lemniscate elliptic functions are elliptic functions related to the arc length of the lemniscate of Bernoulli. They were first studied by Giulio Carlo de' Toschi di Fagnano, Giulio Fagnano in 1718 and later by Leonhard Euler and Carl Friedrich Gauss, among others. The lemniscate sine and lemniscate cosine functions, usually written with the symbols and (sometimes the symbols and or and are used instead), are analogous to the trigonometric functions sine and cosine. While the trigonometric sine relates the arc length to the chord length in a unit-diameter circle x^2+y^2 = x, the lemniscate sine relates the arc length to the chord length of a lemniscate \bigl(x^2+y^2\bigr)^2=x^2-y^2. The lemniscate functions have periods related to a number called the lemniscate constant, the ratio of a lemniscate's perimeter to its diameter. This number is a Quartic plane curve, quartic analog of the (Conic section, quadratic) , pi, ratio of perimeter to diameter of a ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
![]() |
Weierstrass Elliptic Functions
In mathematics, the Weierstrass elliptic functions are elliptic functions that take a particularly simple form. They are named for Karl Weierstrass. This class of functions is also referred to as ℘-functions and they are usually denoted by the symbol ℘, a uniquely fancy script ''p''. They play an important role in the theory of elliptic functions, i.e., meromorphic functions that are doubly periodic. A ℘-function together with its derivative can be used to parameterize elliptic curves and they generate the field of elliptic functions with respect to a given period lattice. Symbol for Weierstrass \wp-function Motivation A cubic of the form C_^\mathbb=\ , where g_2,g_3\in\mathbb are complex numbers with g_2^3-27g_3^2\neq0, cannot be rationally parameterized. Yet one still wants to find a way to parameterize it. For the quadric K=\left\; the unit circle, there exists a (non-rational) parameterization using the sine function and its derivative the cosine functio ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
![]() |
Jacobi Elliptic Functions
In mathematics, the Jacobi elliptic functions are a set of basic elliptic functions. They are found in the description of the motion of a pendulum, as well as in the design of electronic elliptic filters. While trigonometric functions are defined with reference to a circle, the Jacobi elliptic functions are a generalization which refer to other conic sections, the ellipse in particular. The relation to trigonometric functions is contained in the notation, for example, by the matching notation \operatorname for \sin. The Jacobi elliptic functions are used more often in practical problems than the Weierstrass elliptic functions as they do not require notions of complex analysis to be defined and/or understood. They were introduced by . Carl Friedrich Gauss had already studied special Jacobi elliptic functions in 1797, the lemniscate elliptic functions in particular, but his work was published much later. Overview There are twelve Jacobi elliptic functions denoted by \operatorna ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
Abel Elliptic Functions
In mathematics Abel elliptic functions are a special kind of elliptic functions, that were established by the Norwegian mathematician Niels Henrik Abel. He published his paper "Recherches sur les Fonctions elliptiques" in ''Crelle's Journal'' in 1827. It was the first work on elliptic functions that was actually published. Abel's work on elliptic functions also influenced Jacobi's studies of elliptic functions, whose 1829 published book '' Fundamenta nova theoriae functionum ellipticarum'' became the standard work on elliptic functions. History Abel's starting point were the elliptic integrals which had been studied in great detail by Adrien-Marie Legendre. He began his research in 1823 when he still was a student. In particular he viewed them as complex functions which at that time were still in their infancy. In the following years Abel continued to explore these functions. He also tried to generalize them to functions with even more periods, but seemed to be in no hurry to publi ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
![]() |
Elliptic Function
In the mathematical field of complex analysis, elliptic functions are special kinds of meromorphic functions, that satisfy two periodicity conditions. They are named elliptic functions because they come from elliptic integrals. Those integrals are in turn named elliptic because they first were encountered for the calculation of the arc length of an ellipse. Important elliptic functions are Jacobi elliptic functions and the Weierstrass \wp-function. Further development of this theory led to hyperelliptic functions and modular forms. Definition A meromorphic function is called an elliptic function, if there are two \mathbb- linear independent complex numbers \omega_1,\omega_2\in\mathbb such that : f(z + \omega_1) = f(z) and f(z + \omega_2) = f(z), \quad \forall z\in\mathbb. So elliptic functions have two periods and are therefore doubly periodic functions. Period lattice and fundamental domain If f is an elliptic function with periods \omega_1,\omega_2 it also holds ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
![]() |
Zeros And Poles
In complex analysis (a branch of mathematics), a pole is a certain type of singularity of a complex-valued function of a complex variable. It is the simplest type of non- removable singularity of such a function (see essential singularity). Technically, a point is a pole of a function if it is a zero of the function and is holomorphic (i.e. complex differentiable) in some neighbourhood of . A function is meromorphic in an open set if for every point of there is a neighborhood of in which at least one of and is holomorphic. If is meromorphic in , then a zero of is a pole of , and a pole of is a zero of . This induces a duality between ''zeros'' and ''poles'', that is fundamental for the study of meromorphic functions. For example, if a function is meromorphic on the whole complex plane plus the point at infinity, then the sum of the multiplicities of its poles equals the sum of the multiplicities of its zeros. Definitions A function of a complex variable ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
Zero Of A Function
In mathematics, a zero (also sometimes called a root) of a real-, complex-, or generally vector-valued function f, is a member x of the domain of f such that f(x) ''vanishes'' at x; that is, the function f attains the value of 0 at x, or equivalently, x is a solution to the equation f(x) = 0. A "zero" of a function is thus an input value that produces an output of 0. A root of a polynomial is a zero of the corresponding polynomial function. The fundamental theorem of algebra shows that any non-zero polynomial has a number of roots at most equal to its degree, and that the number of roots and the degree are equal when one considers the complex roots (or more generally, the roots in an algebraically closed extension) counted with their multiplicities. For example, the polynomial f of degree two, defined by f(x)=x^2-5x+6=(x-2)(x-3) has the two roots (or zeros) that are 2 and 3. f(2)=2^2-5\times 2+6= 0\textf(3)=3^2-5\times 3+6=0. If the function maps real numbers to real n ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Residue Theorem
In complex analysis, the residue theorem, sometimes called Cauchy's residue theorem, is a powerful tool to evaluate line integrals of analytic functions over closed curves; it can often be used to compute real integrals and infinite series as well. It generalizes the Cauchy integral theorem and Cauchy's integral formula. The residue theorem should not be confused with special cases of the generalized Stokes' theorem; however, the latter can be used as an ingredient of its proof. Statement of Cauchy's residue theorem The statement is as follows: Residue theorem: Let U be a simply connected open subset of the complex plane containing a finite list of points a_1, \ldots, a_n, U_0 = U \smallsetminus \, and a function f holomorphic function, holomorphic on U_0. Letting \gamma be a closed rectifiable curve in U_0, and denoting the residue (complex analysis), residue of f at each point a_k by \operatorname(f, a_k) and the winding number of \gamma around a_k by \operatorname(\gamma, a ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
![]() |
Line Integral
In mathematics, a line integral is an integral where the function (mathematics), function to be integrated is evaluated along a curve. The terms ''path integral'', ''curve integral'', and ''curvilinear integral'' are also used; ''contour integral'' is used as well, although that is typically reserved for #Complex line integral, line integrals in the complex plane. The function to be integrated may be a scalar field or a vector field. The value of the line integral is the sum of values of the field at all points on the curve, weighted by some scalar function on the curve (commonly arc length or, for a vector field, the Dot product, scalar product of the vector field with a Differential (infinitesimal), differential vector in the curve). This weighting distinguishes the line integral from simpler integrals defined on interval (mathematics), intervals. Many simple formulae in physics, such as the definition of Work (physics), work as have natural continuous analogues in terms of l ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |