
In mathematics, the Dixon elliptic functions sm and cm are two
elliptic function
In the mathematical field of complex analysis, elliptic functions are a special kind of meromorphic functions, that satisfy two periodicity conditions. They are named elliptic functions because they come from elliptic integrals. Originally those i ...
s (
doubly periodic
In the mathematical field of complex analysis, elliptic functions are a special kind of meromorphic functions, that satisfy two periodicity conditions. They are named elliptic functions because they come from elliptic integrals. Originally those in ...
meromorphic function
In the mathematical field of complex analysis, a meromorphic function on an open subset ''D'' of the complex plane is a function that is holomorphic on all of ''D'' ''except'' for a set of isolated points, which are poles of the function. ...
s on the
complex plane
In mathematics, the complex plane is the plane formed by the complex numbers, with a Cartesian coordinate system such that the -axis, called the real axis, is formed by the real numbers, and the -axis, called the imaginary axis, is formed by th ...
) that map from each
regular hexagon
In geometry, a hexagon (from Greek , , meaning "six", and , , meaning "corner, angle") is a six-sided polygon. The total of the internal angles of any simple (non-self-intersecting) hexagon is 720°.
Regular hexagon
A '' regular hexagon'' has ...
in a
hexagonal tiling
In geometry, the hexagonal tiling or hexagonal tessellation is a regular tiling of the Euclidean plane, in which exactly three hexagons meet at each vertex. It has Schläfli symbol of or (as a truncated triangular tiling).
English mathema ...
to the whole complex plane. Because these functions satisfy the identity
, as
real functions
In mathematical analysis, and applications in geometry, applied mathematics, engineering, and natural sciences, a function of a real variable is a function whose domain is the real numbers \mathbb, or a subset of \mathbb that contains an inter ...
they parametrize the cubic
Fermat curve
In mathematics, the Fermat curve is the algebraic curve in the complex projective plane defined in homogeneous coordinates (''X'':''Y'':''Z'') by the Fermat equation
:X^n + Y^n = Z^n.\
Therefore, in terms of the affine plane its equation is
:x^ ...
, just as the
trigonometric function
In mathematics, the trigonometric functions (also called circular functions, angle functions or goniometric functions) are real functions which relate an angle of a right-angled triangle to ratios of two side lengths. They are widely used in ...
s sine and cosine parametrize the
unit circle
In mathematics, a unit circle is a circle of unit radius—that is, a radius of 1. Frequently, especially in trigonometry, the unit circle is the circle of radius 1 centered at the origin (0, 0) in the Cartesian coordinate system in the Eucli ...
.
They were named sm and cm by
Alfred Dixon in 1890, by analogy to the trigonometric functions sine and cosine and the
Jacobi elliptic functions In mathematics, the Jacobi elliptic functions are a set of basic elliptic functions. They are found in the description of the motion of a pendulum (see also pendulum (mathematics)), as well as in the design of electronic elliptic filters. While ...
sn and cn;
Göran Dillner
Göran Dillner (April 26, 1832 – March 28, 1906) was a Swedish mathematician.
He founded the Swedish ''Tidskrift för matematik och fysik'' (Journal of Mathematics and Physics), and was its editor-in-chief in 1868–1871 and 1874. He was a cit ...
described them earlier in 1873.
Definition
The functions sm and cm can be defined as the solutions to the
initial value problem
In multivariable calculus, an initial value problem (IVP) is an ordinary differential equation together with an initial condition which specifies the value of the unknown function at a given point in the domain. Modeling a system in physics or o ...
:
:
Or as the inverse of the
Schwarz–Christoffel mapping In complex analysis, a Schwarz–Christoffel mapping is a conformal map of the upper half-plane or the complex unit disk onto the interior of a simple polygon. Such a map is guaranteed to exist by the Riemann mapping theorem (stated by Bernhard ...
from the complex unit disk to an equilateral triangle, the
Abelian integral In mathematics, an abelian integral, named after the Norwegian mathematician Niels Henrik Abel, is an integral in the complex plane of the form
:\int_^z R(x,w) \, dx,
where R(x,w) is an arbitrary rational function of the two variables x and w, wh ...
:
:
which can also be expressed using the
hypergeometric function:
:
Parametrization of the cubic Fermat curve

Both sm and cm have a period along the real axis of
with
the
beta function
In mathematics, the beta function, also called the Euler integral of the first kind, is a special function that is closely related to the gamma function and to binomial coefficients. It is defined by the integral
: \Beta(z_1,z_2) = \int_0^1 t^ ...
and
the
gamma function
In mathematics, the gamma function (represented by , the capital letter gamma from the Greek alphabet) is one commonly used extension of the factorial function to complex numbers. The gamma function is defined for all complex numbers except th ...
:
:
They satisfy the identity
. The parametric function