HOME



picture info

Mathematical Objects
A mathematical object is an abstract concept arising in mathematics. Typically, a mathematical object can be a value that can be assigned to a symbol, and therefore can be involved in formulas. Commonly encountered mathematical objects include numbers, expressions, shapes, functions, and sets. Mathematical objects can be very complex; for example, theorems, proofs, and even formal theories are considered as mathematical objects in proof theory. In Philosophy of mathematics, the concept of "mathematical objects" touches on topics of existence, identity, and the nature of reality. In metaphysics, objects are often considered entities that possess properties and can stand in various relations to one another. Philosophers debate whether mathematical objects have an independent existence outside of human thought ( realism), or if their existence is dependent on mental constructs or language (idealism and nominalism). Objects can range from the concrete: such as physical obje ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Tesseract
In geometry, a tesseract or 4-cube is a four-dimensional hypercube, analogous to a two-dimensional square and a three-dimensional cube. Just as the perimeter of the square consists of four edges and the surface of the cube consists of six square faces, the hypersurface of the tesseract consists of eight cubical cells, meeting at right angles. The tesseract is one of the six convex regular 4-polytopes. The tesseract is also called an 8-cell, C8, (regular) octachoron, or cubic prism. It is the four-dimensional measure polytope, taken as a unit for hypervolume. Coxeter labels it the polytope. The term ''hypercube'' without a dimension reference is frequently treated as a synonym for this specific polytope. The ''Oxford English Dictionary'' traces the word ''tesseract'' to Charles Howard Hinton's 1888 book '' A New Era of Thought''. The term derives from the Greek ( 'four') and ( 'ray'), referring to the four edges from each vertex to other vertices. Hinton orig ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Expression (mathematics)
In mathematics, an expression is a written arrangement of symbol (mathematics), symbols following the context-dependent, syntax (logic), syntactic conventions of mathematical notation. Symbols can denote numbers, variable (mathematics), variables, operation (mathematics), operations, and function (mathematics), functions. Other symbols include punctuation marks and bracket (mathematics), brackets, used for Symbols of grouping, grouping where there is not a well-defined order of operations. Expressions are commonly distinguished from ''mathematical formula, formulas'': expressions are a kind of mathematical object, whereas formulas are statements ''about'' mathematical objects. This is analogous to natural language, where a noun phrase refers to an object, and a whole Sentence (linguistics), sentence refers to a fact. For example, 8x-5 is an expression, while the Inequality (mathematics), inequality 8x-5 \geq 3 is a formula. To ''evaluate'' an expression means to find a numeric ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Metaphysics
Metaphysics is the branch of philosophy that examines the basic structure of reality. It is traditionally seen as the study of mind-independent features of the world, but some theorists view it as an inquiry into the conceptual framework of human understanding. Some philosophers, including Aristotle, designate metaphysics as first philosophy to suggest that it is more fundamental than other forms of philosophical inquiry. Metaphysics encompasses a wide range of general and abstract topics. It investigates the nature of existence, the features all entities have in common, and their division into categories of being. An influential division is between particulars and universals. Particulars are individual unique entities, like a specific apple. Universals are general features that different particulars have in common, like the color . Modal metaphysics examines what it means for something to be possible or necessary. Metaphysicians also explore the concepts of space, time, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Reality
Reality is the sum or aggregate of everything in existence; everything that is not imagination, imaginary. Different Culture, cultures and Academic discipline, academic disciplines conceptualize it in various ways. Philosophical questions about the nature of reality, existence, or being are considered under the rubric of ontology, a major branch of metaphysics in the Western intellectual tradition. Ontological questions also feature in diverse branches of philosophy, including the philosophy of science, philosophy of religion, religion, philosophy of mathematics, mathematics, and philosophical logic, logic. These include questions about whether only physical objects are real (e.g., physicalism), whether reality is fundamentally immaterial (e.g., idealism), whether hypothetical unobservable entities posited by scientific theories exist (e.g., scientific realism), whether God exists, whether numbers and other abstract objects exist, and whether possible worlds exist. Etymology a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Nature (philosophy)
Nature has two inter-related meanings in philosophy and natural philosophy. On the one hand, it means the set of all things which are natural, or subject to the normal working of the Physical law, laws of nature. On the other hand, it means the essence, essential properties and causes of individual things. How to understand the meaning and significance of nature has been a consistent theme of discussion within the history of Western Civilization, in the philosophy, philosophical fields of metaphysics and epistemology, as well as in theology and science. The study of natural things and the regular laws which seem to govern them, as opposed to discussion about what it means to be natural, is the area of natural science. The word "nature" derives from Latin ''wikt:natura#Latin, nātūra'', a philosophical term derived from the verb for birth, which was used as a translation for the earlier (pre-Socratic) ancient Greek, Greek term ''Physis, phusis'', derived from the verb for natural ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Identity (philosophy)
In metaphysics, identity (from , "sameness") is the relation each thing bears only to itself. The notion of identity gives rise to many philosophical problems, including the identity of indiscernibles (if ''x'' and ''y'' share all their properties, are they one and the same thing?), and questions about change and personal identity over time (what has to be the case for a person ''x'' at one time and a person ''y'' at a later time to be one and the same person?). It is important to distinguish between ''qualitative identity'' and ''numerical identity''. For example, consider two children with identical bicycles engaged in a race while their mother is watching. The two children have the ''same'' bicycle in one sense (''qualitative identity'') and the ''same'' mother in another sense (''numerical identity''). This article is mainly concerned with ''numerical identity'', which is the stricter notion. The philosophical concept of identity is distinct from the better-known notion of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Existence
Existence is the state of having being or reality in contrast to nonexistence and nonbeing. Existence is often contrasted with essence: the essence of an entity is its essential features or qualities, which can be understood even if one does not know whether the entity exists. Ontology is the philosophical discipline studying the nature and types of existence. Singular existence is the existence of individual entities while general existence refers to the existence of concepts or universals. Entities present in space and time have Abstract and concrete, concrete existence in contrast to abstract entities, like numbers and sets. Other distinctions are between Subjunctive possibility, possible, Contingency (philosophy), contingent, and Metaphysical necessity, necessary existence and between Matter, physical and Mind, mental existence. The common view is that an entity either exists or not with nothing in between, but some philosophers say that there are degrees of existence, me ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Philosophy Of Mathematics
Philosophy of mathematics is the branch of philosophy that deals with the nature of mathematics and its relationship to other areas of philosophy, particularly epistemology and metaphysics. Central questions posed include whether or not mathematical objects are purely abstract entities or are in some way concrete, and in what the relationship such objects have with physical reality consists. Major themes that are dealt with in philosophy of mathematics include: *''Reality'': The question is whether mathematics is a pure product of human mind or whether it has some reality by itself. *''Logic and rigor'' *''Relationship with physical reality'' *''Relationship with science'' *''Relationship with applications'' *''Mathematical truth'' *''Nature as human activity'' (science, the arts, art, game, or all together) Major themes Reality Logic and rigor Mathematical reasoning requires Mathematical rigor, rigor. This means that the definitions must be absolutely unambiguous and th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Proof Theory
Proof theory is a major branchAccording to , proof theory is one of four domains mathematical logic, together with model theory, axiomatic set theory, and recursion theory. consists of four corresponding parts, with part D being about "Proof Theory and Constructive Mathematics". of mathematical logic and theoretical computer science within which proofs are treated as formal mathematical objects, facilitating their analysis by mathematical techniques. Proofs are typically presented as inductively defined data structures such as lists, boxed lists, or trees, which are constructed according to the axioms and rules of inference of a given logical system. Consequently, proof theory is syntactic in nature, in contrast to model theory, which is semantic in nature. Some of the major areas of proof theory include structural proof theory, ordinal analysis, provability logic, reverse mathematics, proof mining, automated theorem proving, and proof complexity. Much research also ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Theory (mathematical Logic)
In mathematical logic, a theory (also called a formal theory) is a set of sentences in a formal language. In most scenarios a deductive system is first understood from context, giving rise to a formal system that combines the language with deduction rules. An element \phi\in T of a deductively closed theory T is then called a theorem of the theory. In many deductive systems there is usually a subset \Sigma \subseteq T that is called "the set of axioms" of the theory T, in which case the deductive system is also called an " axiomatic system". By definition, every axiom is automatically a theorem. A first-order theory is a set of first-order sentences (theorems) recursively obtained by the inference rules of the system applied to the set of axioms. General theories (as expressed in formal language) When defining theories for foundational purposes, additional care must be taken, as normal set-theoretic language may not be appropriate. The construction of a theory begins ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Proof (mathematics)
A mathematical proof is a deductive reasoning, deductive Argument-deduction-proof distinctions, argument for a Proposition, mathematical statement, showing that the stated assumptions logically guarantee the conclusion. The argument may use other previously established statements, such as theorems; but every proof can, in principle, be constructed using only certain basic or original assumptions known as axioms, along with the accepted rules of inference. Proofs are examples of exhaustive deductive reasoning that establish logical certainty, to be distinguished from empirical evidence, empirical arguments or non-exhaustive inductive reasoning that establish "reasonable expectation". Presenting many cases in which the statement holds is not enough for a proof, which must demonstrate that the statement is true in ''all'' possible cases. A proposition that has not been proved but is believed to be true is known as a conjecture, or a hypothesis if frequently used as an assumption for ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Theorem
In mathematics and formal logic, a theorem is a statement (logic), statement that has been Mathematical proof, proven, or can be proven. The ''proof'' of a theorem is a logical argument that uses the inference rules of a deductive system to establish that the theorem is a logical consequence of the axioms and previously proved theorems. In mainstream mathematics, the axioms and the inference rules are commonly left implicit, and, in this case, they are almost always those of Zermelo–Fraenkel set theory with the axiom of choice (ZFC), or of a less powerful theory, such as Peano arithmetic. Generally, an assertion that is explicitly called a theorem is a proved result that is not an immediate consequence of other known theorems. Moreover, many authors qualify as ''theorems'' only the most important results, and use the terms ''lemma'', ''proposition'' and ''corollary'' for less important theorems. In mathematical logic, the concepts of theorems and proofs have been formal system ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]