HOME





Theory (mathematical Logic)
In mathematical logic, a theory (also called a formal theory) is a set of sentences in a formal language. In most scenarios a deductive system is first understood from context, giving rise to a formal system that combines the language with deduction rules. An element \phi\in T of a deductively closed theory T is then called a theorem of the theory. In many deductive systems there is usually a subset \Sigma \subseteq T that is called "the set of axioms" of the theory T, in which case the deductive system is also called an " axiomatic system". By definition, every axiom is automatically a theorem. A first-order theory is a set of first-order sentences (theorems) recursively obtained by the inference rules of the system applied to the set of axioms. General theories (as expressed in formal language) When defining theories for foundational purposes, additional care must be taken, as normal set-theoretic language may not be appropriate. The construction of a theory begins ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mathematical Logic
Mathematical logic is the study of Logic#Formal logic, formal logic within mathematics. Major subareas include model theory, proof theory, set theory, and recursion theory (also known as computability theory). Research in mathematical logic commonly addresses the mathematical properties of formal systems of logic such as their expressive or deductive power. However, it can also include uses of logic to characterize correct mathematical reasoning or to establish foundations of mathematics. Since its inception, mathematical logic has both contributed to and been motivated by the study of foundations of mathematics. This study began in the late 19th century with the development of axiomatic frameworks for geometry, arithmetic, and Mathematical analysis, analysis. In the early 20th century it was shaped by David Hilbert's Hilbert's program, program to prove the consistency of foundational theories. Results of Kurt Gödel, Gerhard Gentzen, and others provided partial resolution to th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Principle Of Explosion
In classical logic, intuitionistic logic, and similar logical systems, the principle of explosion is the law according to which any statement can be proven from a contradiction. That is, from a contradiction, any proposition (including its negation) can be inferred; this is known as deductive explosion. The proof of this principle was first given by 12th-century French philosopher William of Soissons. Due to the principle of explosion, the existence of a contradiction ( inconsistency) in a formal axiomatic system is disastrous; since any statement can be proven, it trivializes the concepts of truth and falsity. Around the turn of the 20th century, the discovery of contradictions such as Russell's paradox at the foundations of mathematics thus threatened the entire structure of mathematics. Mathematicians such as Gottlob Frege, Ernst Zermelo, Abraham Fraenkel, and Thoralf Skolem put much effort into revising set theory to eliminate these contradictions, resulting in the mo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Expansion (model Theory)
In universal algebra and in model theory, a reduct of an algebraic structure is obtained by omitting some of the operations and relations of that structure. The opposite of "reduct" is "expansion". Definition Let ''A'' be an algebraic structure (in the sense of universal algebra) or a structure in the sense of model theory, organized as a set ''X'' together with an indexed family of operations and relations φ''i'' on that set, with index set ''I''. Then the reduct of ''A'' defined by a subset ''J'' of ''I'' is the structure consisting of the set ''X'' and ''J''-indexed family of operations and relations whose ''j''-th operation or relation for ''j'' ∈ ''J'' is the ''j''-th operation or relation of ''A''. That is, this reduct is the structure ''A'' with the omission of those operations and relations φ''i'' for which ''i'' is not in ''J''. A structure ''A'' is an expansion of ''B'' just when ''B'' is a reduct of ''A''. That is, reduct and expansion are mutual converses. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Signature (logic)
In logic, especially mathematical logic, a signature lists and describes the non-logical symbols of a formal language. In universal algebra, a signature lists the operations that characterize an algebraic structure. In model theory, signatures are used for both purposes. They are rarely made explicit in more philosophical treatments of logic. Definition Formally, a (single-sorted) signature can be defined as a 4-tuple \sigma = \left(S_, S_, S_, \operatorname\right), where S_ and S_ are disjoint sets not containing any other basic logical symbols, called respectively * '' function symbols'' (examples: +, \times), * ''s'' or '' predicates'' (examples: \,\leq, \, \in), * '' constant symbols'' (examples: 0, 1), and a function \operatorname : S_ \cup S_ \to \N which assigns a natural number called ''arity'' to every function or relation symbol. A function or relation symbol is called n-ary if its arity is n. Some authors define a nullary (0-ary) function symbol as ''constant symbol'', ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Structure (mathematical Logic)
In universal algebra and in model theory, a structure consists of a set along with a collection of finitary operations and relations that are defined on it. Universal algebra studies structures that generalize the algebraic structures such as groups, rings, fields and vector spaces. The term universal algebra is used for structures of first-order theories with no relation symbols. Model theory has a different scope that encompasses more arbitrary first-order theories, including foundational structures such as models of set theory. From the model-theoretic point of view, structures are the objects used to define the semantics of first-order logic, cf. also Tarski's theory of truth or Tarskian semantics. For a given theory in model theory, a structure is called a model if it satisfies the defining axioms of that theory, although it is sometimes disambiguated as a '' semantic model'' when one discusses the notion in the more general setting of mathematical models. Log ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Many-to-one
In systems analysis, a one-to-many relationship is a type of cardinality (data modeling), cardinality that refers to the relationship between two wikt:entity, entities (see also entity–relationship model). For example, take a car and an owner of the car. The car can only be owned by one owner at a time or not owned at all, and an owner could own zero, one, or multiple cars. One owner could have many cars, one-to-many. In a relational database, a one-to-many relationship exists when one record is related to many records of another table. A one-to-many relationship is not a property of the data, but rather of the relationship itself. One-to-many often refer to a primary key to foreign key relationship between two tables, where the record in the first table can relate to multiple records in the second table. A foreign key is one side of the relationship that shows a row or multiple rows, with one of those rows being the primary key already listed on the first table. This is also cal ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




ω-consistent Theory
In mathematical logic, an ω-consistent (or omega-consistent, also called numerically segregative) W. V. O. Quine (1971), ''Set Theory and Its Logic''. theory is a theory (collection of sentences) that is not only (syntactically) consistentS. C. Kleene, ''Introduction to Metamathematics'' (1971), p.207. Bibliotheca Mathematica: ''A Series of Monographs on Pure and Applied Mathematics'' Vol. I, Wolters-Noordhoff, North-Holland 0-7204-2103-9, Elsevier 0-444-10088-1. (that is, does not prove a contradiction), but also avoids proving certain infinite combinations of sentences that are intuitively contradictory. The name is due to Kurt Gödel, who introduced the concept in the course of proving the incompleteness theorem. Definition A theory ''T'' is said to interpret the language of arithmetic if there is a translation of formulas of arithmetic into the language of ''T'' so that ''T'' is able to prove the basic axioms of the natural numbers under this translation. A ''T'' tha ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Consistent
In deductive logic, a consistent theory is one that does not lead to a logical contradiction. A theory T is consistent if there is no formula \varphi such that both \varphi and its negation \lnot\varphi are elements of the set of consequences of T. Let A be a set of closed sentences (informally "axioms") and \langle A\rangle the set of closed sentences provable from A under some (specified, possibly implicitly) formal deductive system. The set of axioms A is consistent when there is no formula \varphi such that \varphi \in \langle A \rangle and \lnot \varphi \in \langle A \rangle. A ''trivial'' theory (i.e., one which proves every sentence in the language of the theory) is clearly inconsistent. Conversely, in an explosive formal system (e.g., classical or intuitionistic propositional or first-order logics) every inconsistent theory is trivial. Consistency of a theory is a syntactic notion, whose semantic counterpart is satisfiability. A theory is satisfiable if it has a mod ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Complete Theory
In mathematical logic, a theory is complete if it is consistent and for every closed formula in the theory's language, either that formula or its negation is provable. That is, for every sentence \varphi, the theory T contains the sentence or its negation but not both (that is, either T \vdash \varphi or T \vdash \neg \varphi). Recursively axiomatizable first-order theories that are consistent and rich enough to allow general mathematical reasoning to be formulated cannot be complete, as demonstrated by Gödel's first incompleteness theorem. This sense of ''complete'' is distinct from the notion of a complete ''logic'', which asserts that for every theory that can be formulated in the logic, all semantically valid statements are provable theorems (for an appropriate sense of "semantically valid"). Gödel's completeness theorem is about this latter kind of completeness. Complete theories are closed under a number of conditions internally modelling the T-schema: * For a set of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Second-order Logic
In logic and mathematics, second-order logic is an extension of first-order logic, which itself is an extension of propositional logic. Second-order logic is in turn extended by higher-order logic and type theory. First-order logic quantifies only variables that range over individuals (elements of the domain of discourse); second-order logic, in addition, quantifies over relations. For example, the second-order sentence \forall P\,\forall x (Px \lor \neg Px) says that for every formula ''P'', and every individual ''x'', either ''Px'' is true or not(''Px'') is true (this is the law of excluded middle). Second-order logic also includes quantification over sets, functions, and other variables (see section below). Both first-order and second-order logic use the idea of a domain of discourse (often called simply the "domain" or the "universe"). The domain is a set over which individual elements may be quantified. Examples First-order logic can quantify over individuals, but no ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]