HOME



picture info

Császár Polyhedron
In geometry, the Császár polyhedron () is a nonconvex toroidal polyhedron with 14 triangular faces. This polyhedron has no diagonals; every pair of vertices is connected by an edge. The seven vertices and 21 edges of the Császár polyhedron form an embedding of the complete graph onto a topological torus. Of the 35 possible triangles from vertices of the polyhedron, only 14 are faces. Complete graph The tetrahedron and the Császár polyhedron are the only two known polyhedra (having a manifold boundary) without any diagonals: every two vertices of the polygon are connected by an edge, so there is no line segment between two vertices that does not lie on the polyhedron boundary. That is, the vertices and edges of the Császár polyhedron form a complete graph. The combinatorial description of this polyhedron has been described earlier by Möbius. Three additional different polyhedra of this type can be found in a paper by . If the boundary of a polyhedron with ''v'' ve ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Toroidal Polyhedron
In geometry, a toroidal polyhedron is a polyhedron which is also a toroid (a -holed torus), having a topology (Mathematics), topological Genus (mathematics), genus () of 1 or greater. Notable examples include the Császár polyhedron, Császár and Szilassi polyhedron, Szilassi polyhedra. Variations in definition Toroidal polyhedra are defined as collections of polygons that meet at their edges and vertices, forming a manifold as they do. That is, each edge should be shared by exactly two polygons, and at each vertex the edges and faces that meet at the vertex should be linked together in a single cycle of alternating edges and faces, the link (geometry), link of the vertex. For toroidal polyhedra, this manifold is an orientability, orientable surface. Some authors restrict the phrase "toroidal polyhedra" to mean more specifically polyhedra topologically equivalent to the (genus 1) torus. In this area, it is important to distinguish embedding, embedded toroidal polyhedra, wh ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Tetrahedron
In geometry, a tetrahedron (: tetrahedra or tetrahedrons), also known as a triangular pyramid, is a polyhedron composed of four triangular Face (geometry), faces, six straight Edge (geometry), edges, and four vertex (geometry), vertices. The tetrahedron is the simplest of all the ordinary convex polytope, convex polyhedra. The tetrahedron is the three-dimensional case of the more general concept of a Euclidean geometry, Euclidean simplex, and may thus also be called a 3-simplex. The tetrahedron is one kind of pyramid (geometry), pyramid, which is a polyhedron with a flat polygon base and triangular faces connecting the base to a common point. In the case of a tetrahedron, the base is a triangle (any of the four faces can be considered the base), so a tetrahedron is also known as a "triangular pyramid". Like all convex polyhedra, a tetrahedron can be folded from a single sheet of paper. It has two such net (polyhedron), nets. For any tetrahedron there exists a sphere (called th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Nonconvex Polyhedra
In geometry, a uniform star polyhedron is a self-intersecting uniform polyhedron. They are also sometimes called nonconvex polyhedra to imply self-intersecting. Each polyhedron can contain either star polygon faces, star polygon vertex figures, or both. The complete set of 57 nonprismatic uniform star polyhedra includes the 4 regular ones, called the Kepler–Poinsot polyhedron, Kepler–Poinsot polyhedra, 14 Quasiregular polyhedron#Nonconvex examples, quasiregular ones, and 39 semiregular ones. There are also two infinite sets of Uniform_polyhedron#.28p_2_2.29_Prismatic_.5Bp.2C2.5D.2C_I2.28p.29_family_.28Dph_dihedral_symmetry.29, ''uniform star prisms'' and ''uniform star antiprisms''. Just as (nondegenerate) star polygons (which have density (polytope), polygon density greater than 1) correspond to circular polygons with overlapping Tessellation, tiles, star polyhedra that do not pass through the center have polytope density greater than 1, and correspond to spherical polyhe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Schönhardt Polyhedron
In geometry, a Schönhardt polyhedron is a polyhedron with the same combinatorial structure as a regular octahedron, but with dihedral angles that are non-convex along three disjoint edges. Because it has no interior diagonals, it cannot be triangulated into tetrahedra without adding new vertices. It has the fewest vertices of any polyhedron that cannot be triangulated. It is named after the German mathematician Erich Schönhardt, who described it in 1928, although the artist Karlis Johansons had exhibited a related structure in 1921. One construction for the Schönhardt polyhedron starts with a triangular prism and twists the two equilateral triangle faces of the prism relative to each other, breaking each square face into two triangles separated by a non-convex edge. Some twist angles produce a ''jumping polyhedron'' whose two solid forms share the same face shapes. A 30° twist instead produces a ''shaky polyhedron'', rigid but not infinitesimally rigid, whose edges fo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hexagon
In geometry, a hexagon (from Greek , , meaning "six", and , , meaning "corner, angle") is a six-sided polygon. The total of the internal angles of any simple (non-self-intersecting) hexagon is 720°. Regular hexagon A regular hexagon is defined as a hexagon that is both equilateral and equiangular. In other words, a hexagon is said to be regular if the edges are all equal in length, and each of its internal angle is equal to 120°. The Schläfli symbol denotes this polygon as \ . However, the regular hexagon can also be considered as the cutting off the vertices of an equilateral triangle, which can also be denoted as \mathrm\ . A regular hexagon is bicentric, meaning that it is both cyclic (has a circumscribed circle) and tangential (has an inscribed circle). The common length of the sides equals the radius of the circumscribed circle or circumcircle, which equals \tfrac times the apothem (radius of the inscribed circle). Measurement The longest diagonals of a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Lajos Szilassi
Lajos Szilassi (born in 1942 in Szentes, Hungary) was a professor of mathematics at the University of Szeged who worked in projective geometry, projective and non-Euclidean geometry, applying his research to computer generated solutions to geometric problems.Lajos Szilassi is 70
Department of Geometry, Bolyai Institute, Faculty of Science, University of Szeged


Biography

Szilassi obtained his undergraduate degree in 1966 at the Bolyai Institute of the József Attila University, majoring in mathematical representation geometry. He taught for six years in a secondary school before joining the Department of Mathematics at Gyula Juhász Teacher Training College. In 1981, he received a bachelor's associate degree. He then received his Doctor rerum naturalium, ''Doctor rerum naturalium'' d ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Dual Polyhedron
In geometry, every polyhedron is associated with a second dual structure, where the vertices of one correspond to the faces of the other, and the edges between pairs of vertices of one correspond to the edges between pairs of faces of the other. Such dual figures remain combinatorial or abstract polyhedra, but not all can also be constructed as geometric polyhedra. Starting with any given polyhedron, the dual of its dual is the original polyhedron. Duality preserves the symmetries of a polyhedron. Therefore, for many classes of polyhedra defined by their symmetries, the duals belong to a corresponding symmetry class. For example, the regular polyhedrathe (convex) Platonic solids and (star) Kepler–Poinsot polyhedraform dual pairs, where the regular tetrahedron is self-dual. The dual of an isogonal polyhedron (one in which any two vertices are equivalent under symmetries of the polyhedron) is an isohedral polyhedron (one in which any two faces are equivalent .., and vice ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Ákos Császár
Ákos Császár (, ) (26 February 1924 – 14 December 2017) was a Hungarian mathematician, specializing in general topology and real analysis. He discovered the Császár polyhedron, a nonconvex polyhedron without diagonals. He introduced the notion of syntopogeneous spaces, a generalization of topological spaces. He was born in Budapest. Towards the end of 1944 his grandfather lost his life during the Siege of Budapest. Then his father, older brother and himself were arrested by the Germans and sent to a concentration camp approximatively 45 miles east of Budapest. An infectious illness spread in the camp, and his brother and father died, but Ákos survived. He was a member of the group of five students of the late professor Lipót Fejér, who called them "The Big Five". The other four are John Horvath, János Aczél, Steven Gaal, and László Fuchs, all of whom became mathematics professors in North America;
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Modular Arithmetic
In mathematics, modular arithmetic is a system of arithmetic operations for integers, other than the usual ones from elementary arithmetic, where numbers "wrap around" when reaching a certain value, called the modulus. The modern approach to modular arithmetic was developed by Carl Friedrich Gauss in his book '' Disquisitiones Arithmeticae'', published in 1801. A familiar example of modular arithmetic is the hour hand on a 12-hour clock. If the hour hand points to 7 now, then 8 hours later it will point to 3. Ordinary addition would result in , but 15 reads as 3 on the clock face. This is because the hour hand makes one rotation every 12 hours and the hour number starts over when the hour hand passes 12. We say that 15 is ''congruent'' to 3 modulo 12, written 15 ≡ 3 (mod 12), so that 7 + 8 ≡ 3 (mod 12). Similarly, if one starts at 12 and waits 8 hours, the hour hand will be at 8. If one instead waited twice as long, 16 hours, the hour hand would be on 4. This ca ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Euler Characteristic
In mathematics, and more specifically in algebraic topology and polyhedral combinatorics, the Euler characteristic (or Euler number, or Euler–Poincaré characteristic) is a topological invariant, a number that describes a topological space's shape or structure regardless of the way it is bent. It is commonly denoted by \chi (Greek alphabet, Greek lower-case letter chi (letter), chi). The Euler characteristic was originally defined for polyhedron, polyhedra and used to prove various theorems about them, including the classification of the Platonic solids. It was stated for Platonic solids in 1537 in an unpublished manuscript by Francesco Maurolico. Leonhard Euler, for whom the concept is named, introduced it for convex polyhedra more generally but failed to rigorously prove that it is an invariant. In modern mathematics, the Euler characteristic arises from homology (mathematics), homology and, more abstractly, homological algebra. Polyhedra The Euler characteristic was ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


August Ferdinand Möbius
August Ferdinand Möbius (, ; ; 17 November 1790 – 26 September 1868) was a German mathematician and theoretical astronomer. Life and education Möbius was born in Schulpforta, Electorate of Saxony, and was descended on his mother's side from religious reformer Martin Luther. He was home-schooled until he was 13, when he attended the college in Schulpforta in 1803, and studied there, graduating in 1809. He then enrolled at the University of Leipzig, where he studied astronomy under the mathematician and astronomer Karl Mollweide. In 1813, he began to study astronomy under mathematician Carl Friedrich Gauss at the University of Göttingen, while Gauss was the director of the Göttingen Observatory. From there, he went to study with Carl Gauss's instructor, Johann Pfaff, at the University of Halle, where he completed his doctoral thesis ''The occultation of fixed stars'' in 1815. In 1816, he was appointed as Extraordinary Professor to the "chair of astronomy and hi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Manifold
In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n-dimensional manifold, or ''n-manifold'' for short, is a topological space with the property that each point has a Neighbourhood (mathematics), neighborhood that is homeomorphic to an open (topology), open subset of n-dimensional Euclidean space. One-dimensional manifolds include Line (geometry), lines and circles, but not Lemniscate, self-crossing curves such as a figure 8. Two-dimensional manifolds are also called Surface (topology), surfaces. Examples include the Plane (geometry), plane, the sphere, and the torus, and also the Klein bottle and real projective plane. The concept of a manifold is central to many parts of geometry and modern mathematical physics because it allows complicated structures to be described in terms of well-understood topological properties of simpler spaces. Manifolds naturally arise as solution sets of systems of equations ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]