HOME





Conchoid Of De Sluze
In algebraic geometry, the conchoids of de Sluze are a family of plane curves studied in 1662 by Walloon mathematician René François Walter, baron de Sluze.. The curves are defined by the polar equation :r=\sec\theta+a\cos\theta \,. In cartesian coordinates, the curves satisfy the implicit equation :(x-1)(x^2+y^2)=ax^2 \, except that for the implicit form has an acnode not present in polar form. They are rational, circular, cubic plane curves. These expressions have an asymptote (for ). The point most distant from the asymptote is . is a crunode for . The area between the curve and the asymptote is, for , :, a, (1+a/4)\pi \, while for , the area is :\left(1-\frac a2\right)\sqrt-a\left(2+\frac a2\right)\arcsin\frac1. If , the curve will have a loop. The area of the loop is :\left(2+\frac a2\right)a\arccos\frac1 + \left(1-\frac a2\right)\sqrt. Four of the family have names of their own: *, line Line most often refers to: * Line (geometry), object with zero thickness ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Conchoid Of DeSluze
Conchoid can refer to: * Conchoid (mathematics), an equation of a curve discovered by the mathematician Nicomedes * Conchoidal fracture Conchoidal fracture describes the way that brittle materials break or fracture when they do not follow any natural planes of separation. Mindat.org defines conchoidal fracture as follows: "a fracture with smooth, curved surfaces, typically sli ...
, a breakage pattern characteristic to certain glasses and crystals {{disambiguation ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Circular Algebraic Curve
In geometry, a circular algebraic curve is a type of plane algebraic curve determined by an equation ''F''(''x'', ''y'') = 0, where ''F'' is a polynomial with real coefficients and the highest-order terms of ''F'' form a polynomial divisible by ''x''2 + ''y''2. More precisely, if ''F'' = ''F''''n'' + ''F''''n''−1 + ... + ''F''1 + ''F''0, where each ''F''''i'' is homogeneous of degree ''i'', then the curve ''F''(''x'', ''y'') = 0 is circular if and only if ''F''''n'' is divisible by ''x''2 + ''y''2. Equivalently, if the curve is determined in homogeneous coordinates by ''G''(''x'', ''y'', ''z'') = 0, where ''G'' is a homogeneous polynomial, then the curve is circular if and only if ''G''(1, ''i'', 0) = ''G''(1, −''i'', 0) = 0. In other words, the curve is circular if it contains the circular points at infinity, (1, ''i'', 0) and (1, −''i'',&nbs ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Trisectrix Of Maclaurin
In algebraic geometry, the trisectrix of Maclaurin is a cubic plane curve notable for its trisectrix property, meaning it can be used to trisect an angle. It can be defined as locus of the point of intersection of two lines, each rotating at a uniform rate about separate points, so that the ratio of the rates of rotation is 1:3 and the lines initially coincide with the line between the two points. A generalization of this construction is called a sectrix of Maclaurin. The curve is named after Colin Maclaurin who investigated the curve in 1742. Equations Let two lines rotate about the points P = (0,0) and P_1 = (a, 0) so that when the line rotating about P has angle \theta with the ''x'' axis, the rotating about P_1 has angle 3\theta. Let Q be the point of intersection, then the angle formed by the lines at Q is 2\theta. By the law of sines, : = \! so the equation in polar coordinates is (up to translation and rotation) :r= a \frac = \frac = (4 \cos \theta - \sec \theta)\!. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Strophoid
In geometry, a strophoid is a curve generated from a given curve and points (the fixed point) and (the pole) as follows: Let be a variable line passing through and intersecting at . Now let and be the two points on whose distance from is the same as the distance from to (i.e. ). The locus of such points and is then the strophoid of with respect to the pole and fixed point . Note that and are at right angles in this construction. In the special case where is a line, lies on , and is not on , then the curve is called an oblique strophoid. If, in addition, is perpendicular to then the curve is called a right strophoid, or simply ''strophoid'' by some authors. The right strophoid is also called the logocyclic curve or foliate. Equations Polar coordinates Let the curve be given by r = f(\theta), where the origin is taken to be . Let be the point . If K = (r \cos\theta,\ r \sin\theta) is a point on the curve the distance from to is :d = \sqrt = \sqrt. The ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cissoid Of Diocles
In geometry, the cissoid of Diocles (; named for Diocles) is a cubic plane curve notable for the property that it can be used to construct two mean proportionals to a given ratio. In particular, it can be used to double a cube. It can be defined as the cissoid of a circle and a line tangent to it with respect to the point on the circle opposite to the point of tangency. In fact, the curve family of cissoids is named for this example and some authors refer to it simply as ''the'' cissoid. It has a single cusp at the pole, and is symmetric about the diameter of the circle which is the line of tangency of the cusp. The line is an asymptote. It is a member of the conchoid of de Sluze family of curves and in form it resembles a tractrix. Construction and equations Let the radius of be . By translation and rotation, we may take to be the origin and the center of the circle to be (''a'', 0), so is . Then the polar equations of and are: :\begin & r=2a\sec\theta \\ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Line (mathematics)
In geometry, a line is an infinitely long object with no width, depth, or curvature. Thus, lines are One-dimensional space, one-dimensional objects, though they may exist in Two-dimensional Euclidean space, two, Three-dimensional space, three, or higher dimension spaces. The word ''line'' may also refer to a line segment in everyday life, which has two Point (geometry), points to denote its ends. Lines can be referred by two points that lay on it (e.g., \overleftrightarrow) or by a single letter (e.g., \ell). Euclid described a line as "breadthless length" which "lies evenly with respect to the points on itself"; he introduced several postulates as basic unprovable properties from which he constructed all of geometry, which is now called Euclidean geometry to avoid confusion with other geometries which have been introduced since the end of the 19th century (such as Non-Euclidean geometry, non-Euclidean, Projective geometry, projective and affine geometry). In modern mathematic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Crunode
In mathematics, a crunode (archaic) or node is a point where a curve intersects itself so that both branches of the curve have distinct tangent lines at the point of intersection. A crunode is also known as an ''ordinary double point''. For a plane curve, defined as the locus of points , where is a smooth function of variables and ranging over the real numbers, a crunode of the curve is a singularity of the function , where both partial derivatives \tfrac and \tfrac vanish. Further the Hessian matrix of second derivatives will have both positive and negative eigenvalues. See also * Singular point of a curve *Acnode An acnode is an isolated point in the solution set of a polynomial equation in two real variables. Equivalent terms are " isolated point or hermit point". For example the equation :f(x,y)=y^2+x^2-x^3=0 has an acnode at the origin, because it is ... * Cusp * Tacnode * Saddle point References Curves Algebraic curves {{differential-geometry-stub es ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Asymptote
In analytic geometry, an asymptote () of a curve is a line such that the distance between the curve and the line approaches zero as one or both of the ''x'' or ''y'' coordinates tends to infinity. In projective geometry and related contexts, an asymptote of a curve is a line which is tangent to the curve at a point at infinity. The word asymptote is derived from the Greek ἀσύμπτωτος (''asumptōtos'') which means "not falling together", from ἀ priv. + σύν "together" + πτωτ-ός "fallen". The term was introduced by Apollonius of Perga in his work on conic sections, but in contrast to its modern meaning, he used it to mean any line that does not intersect the given curve. There are three kinds of asymptotes: ''horizontal'', ''vertical'' and ''oblique''. For curves given by the graph of a function , horizontal asymptotes are horizontal lines that the graph of the function approaches as ''x'' tends to Vertical asymptotes are vertical lines near which t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cubic Plane Curve
In mathematics, a cubic plane curve is a plane algebraic curve defined by a cubic equation : applied to homogeneous coordinates for the projective plane; or the inhomogeneous version for the affine space determined by setting in such an equation. Here is a non-zero linear combination of the third-degree monomials : These are ten in number; therefore the cubic curves form a projective space of dimension 9, over any given field . Each point imposes a single linear condition on , if we ask that pass through . Therefore, we can find some cubic curve through any nine given points, which may be degenerate, and may not be unique, but will be unique and non-degenerate if the points are in general position; compare to two points determining a line and how five points determine a conic. If two cubics pass through a given set of nine points, then in fact a pencil of cubics does, and the points satisfy additional properties; see Cayley–Bacharach theorem. A cubic cur ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Rational Curve
In mathematics, an affine algebraic plane curve is the zero set of a polynomial in two variables. A projective algebraic plane curve is the zero set in a projective plane of a homogeneous polynomial in three variables. An affine algebraic plane curve can be completed in a projective algebraic plane curve by homogenizing its defining polynomial. Conversely, a projective algebraic plane curve of homogeneous equation can be restricted to the affine algebraic plane curve of equation . These two operations are each inverse to the other; therefore, the phrase algebraic plane curve is often used without specifying explicitly whether it is the affine or the projective case that is considered. More generally, an algebraic curve is an algebraic variety of dimension one. Equivalently, an algebraic curve is an algebraic variety that is birationally equivalent to an algebraic plane curve. If the curve is contained in an affine space or a projective space, one can take a projection for suc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algebraic Geometry
Algebraic geometry is a branch of mathematics, classically studying zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques, mainly from commutative algebra, for solving geometrical problems about these sets of zeros. The fundamental objects of study in algebraic geometry are algebraic varieties, which are geometric manifestations of solutions of systems of polynomial equations. Examples of the most studied classes of algebraic varieties are: plane algebraic curves, which include lines, circles, parabolas, ellipses, hyperbolas, cubic curves like elliptic curves, and quartic curves like lemniscates and Cassini ovals. A point of the plane belongs to an algebraic curve if its coordinates satisfy a given polynomial equation. Basic questions involve the study of the points of special interest like the singular points, the inflection points and the points at infinity. More advanced questions involve the topo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Acnode
An acnode is an isolated point in the solution set of a polynomial equation in two real variables. Equivalent terms are " isolated point or hermit point". For example the equation :f(x,y)=y^2+x^2-x^3=0 has an acnode at the origin, because it is equivalent to :y^2 = x^2 (x-1) and x^2(x-1) is non-negative only when x ≥ 1 or x = 0. Thus, over the ''real'' numbers the equation has no solutions for x < 1 except for (0, 0). In contrast, over the complex numbers the origin is not isolated since square roots of negative real numbers exist. In fact, the complex solution set of a polynomial equation in two complex variables can never have an isolated point. An acnode is a critical point, or singularity, of the defining polynomial function, in the sense that both partial derivatives \partial f\over \partial x and \partial f\over \partial y vanish. Furth ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]