Trisectrix Of Maclaurin
In algebraic geometry, the trisectrix of Maclaurin is a cubic plane curve notable for its trisectrix property, meaning it can be used to trisect an angle. It can be defined as locus of the point of intersection of two lines, each rotating at a uniform rate about separate points, so that the ratio of the rates of rotation is 1:3 and the lines initially coincide with the line between the two points. A generalization of this construction is called a sectrix of Maclaurin. The curve is named after Colin Maclaurin who investigated the curve in 1742. Equations Let two lines rotate about the points P = (0,0) and P_1 = (a, 0) so that when the line rotating about P has angle \theta with the ''x'' axis, the rotating about P_1 has angle 3\theta. Let Q be the point of intersection, then the angle formed by the lines at Q is 2\theta. By the law of sines, : = \! so the equation in polar coordinates is (up to translation and rotation) :r= a \frac = \frac = (4 \cos \theta - \sec \theta).\! Th ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Maclaurin Animated2
Maclaurin or MacLaurin is a surname. Notable people with the surname include: * Colin Maclaurin (1698–1746), Scottish mathematician * Normand MacLaurin (1835–1914), Australian politician and university administrator * Henry Normand MacLaurin (1878–1915), Australian general * Ian MacLaurin, Baron MacLaurin of Knebworth (b. 1937) * Richard Cockburn Maclaurin (1870–1920), US physicist and educator See also * Taylor series in mathematics, a special case of which is the ''Maclaurin series'' * Maclaurin (crater), a crater on the Moon * McLaurin (other) * MacLaren (surname) * McLaren (other) McLaren is a Formula One racing team, part of the McLaren Group. McLaren or MacLaren ( ) may also refer to: Motor vehicles * McLaren F1, a road-going car * McLaren MP4-12C, a road-going car * Mercedes-Benz SLR McLaren, a car by Mercedes-Benz and ... {{surname, Maclaurin Clan MacLaren ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Root Of A Function
In mathematics, a zero (also sometimes called a root) of a real-, complex-, or generally vector-valued function f, is a member x of the domain of f such that f(x) ''vanishes'' at x; that is, the function f attains the value of 0 at x, or equivalently, x is a solution to the equation f(x) = 0. A "zero" of a function is thus an input value that produces an output of 0. A root of a polynomial is a zero of the corresponding polynomial function. The fundamental theorem of algebra shows that any non-zero polynomial has a number of roots at most equal to its degree, and that the number of roots and the degree are equal when one considers the complex roots (or more generally, the roots in an algebraically closed extension) counted with their multiplicities. For example, the polynomial f of degree two, defined by f(x)=x^2-5x+6=(x-2)(x-3) has the two roots (or zeros) that are 2 and 3. f(2)=2^2-5\times 2+6= 0\textf(3)=3^2-5\times 3+6=0. If the function maps real numbers to real n ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Folium Of Descartes
In geometry, the folium of Descartes (; named for René Descartes) is an algebraic curve defined by the implicit equation x^3+y^3-3a\cdot xy=0. dy/dx=(x^2-ay)/(ax-y^2), \,dx/dy=(ax-y^2)/(x^2-ay). History The curve was first proposed and studied by René Descartes in 1638. Its claim to fame lies in an incident in the development of calculus. Descartes challenged Pierre de Fermat to find the tangent line to the curve at an arbitrary point, since Fermat had recently discovered a method for finding tangent lines. Fermat solved the problem easily, something Descartes was unable to do. Since the invention of calculus, the slope of the tangent line can be found easily using implicit differentiation. Mayor Johan(nes) Hudde's second letter on maxima and minima (1658) mentions his calculation of the maximum width of the closed loop, part of ''Mathematical Exercitions'', 5 books (1656/57 Leyden) p. 498, by Frans van Schooten Jnr. Graphing the curve The folium of Descartes can be expr ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Limaçon Trisectrix
In geometry, a limaçon trisectrix is the name for the quartic plane curve that is a trisectrix that is specified as a limaçon. The shape of the limaçon trisectrix can be specified by other curves particularly as a rose (mathematics), rose, conchoid (mathematics), conchoid or epitrochoid. The curve is one among a number of plane curve trisectrixes that includes the Conchoid of Nicomedes, the Tommaso Ceva#The Cycloid of Ceva, Cycloid of Ceva, Quadratrix of Hippias, Trisectrix of Maclaurin, and Tschirnhausen cubic. The limaçon trisectrix a special case of a sectrix of Maclaurin. Specification and loop structure The limaçon trisectrix specified as a polar equation is :r= a(1+2\cos\theta). The constant a may be positive or negative. The two curves with constants a and -a are reflection symmetry, reflections of each other across the line \theta=\pi/2. The period of r= a(1+2\cos\theta) is 2\pi given the period of the sine wave, sinusoid \cos\theta. The limaçon trisectrix is ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Parabola
In mathematics, a parabola is a plane curve which is Reflection symmetry, mirror-symmetrical and is approximately U-shaped. It fits several superficially different Mathematics, mathematical descriptions, which can all be proved to define exactly the same curves. One description of a parabola involves a Point (geometry), point (the Focus (geometry), focus) and a Line (geometry), line (the Directrix (conic section), directrix). The focus does not lie on the directrix. The parabola is the locus (mathematics), locus of points in that plane that are equidistant from the directrix and the focus. Another description of a parabola is as a conic section, created from the intersection of a right circular conical surface and a plane (geometry), plane Parallel (geometry), parallel to another plane that is tangential to the conical surface. The graph of a function, graph of a quadratic function y=ax^2+bx+ c (with a\neq 0 ) is a parabola with its axis parallel to the -axis. Conversely, every ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Pedal Curve
A pedal (from the Latin ''wikt:pes#Latin, pes'' ''pedis'', "foot") is a lever designed to be operated by foot and may refer to: Computers and other equipment * Footmouse, a foot-operated computer mouse * In medical transcription, a pedal is used to control playback of voice dictations Geometry * Pedal curve, a curve derived by construction from a given curve * Pedal triangle, a triangle obtained by projecting a point onto the sides of a triangle Music Albums * Pedals (Rival Schools album), ''Pedals'' (Rival Schools album) * Pedals (Speak album), ''Pedals'' (Speak album) Other music * Bass drum pedal, a pedal used to play a bass drum while leaving the drummer's hands free to play other drums with drum sticks, hands, etc. * Effects pedal, a pedal used commonly for electric guitars * Pedal keyboard, a musical keyboard operated by the player's feet * Pedal harp, a modern orchestral harp with pedals used to change the tuning of its strings * Pedal point, a type of nonchord t ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cissoid
In geometry, a cissoid () is a plane curve generated from two given curves , and a point (the pole). Let be a variable line passing through and intersecting at and at . Let be the point on so that \overline = \overline. (There are actually two such points but is chosen so that is in the same direction from as is from .) Then the locus of such points is defined to be the cissoid of the curves , relative to . Slightly different but essentially equivalent definitions are used by different authors. For example, may be defined to be the point so that \overline = \overline + \overline. This is equivalent to the other definition if is replaced by its Point reflection, reflection through . Or may be defined as the midpoint of and ; this produces the curve generated by the previous curve scaled by a factor of 1/2. Equations If and are given in polar coordinates by r=f_1(\theta) and r=f_2(\theta) respectively, then the equation r=f_2(\theta)-f_1(\theta) describes the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hyperbola
In mathematics, a hyperbola is a type of smooth function, smooth plane curve, curve lying in a plane, defined by its geometric properties or by equations for which it is the solution set. A hyperbola has two pieces, called connected component (topology), connected components or branches, that are mirror images of each other and resemble two infinite bow (weapon), bows. The hyperbola is one of the three kinds of conic section, formed by the intersection of a plane (mathematics), plane and a double cone (geometry), cone. (The other conic sections are the parabola and the ellipse. A circle is a special case of an ellipse.) If the plane intersects both halves of the double cone but does not pass through the apex of the cones, then the conic is a hyperbola. Besides being a conic section, a hyperbola can arise as the locus (mathematics), locus of points whose difference of distances to two fixed focus (geometry), foci is constant, as a curve for each point of which the rays to two fix ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Inverse Curve
In inversive geometry, an inverse curve of a given curve is the result of applying an inverse operation to . Specifically, with respect to a fixed circle with center and radius the inverse of a point is the point for which lies on the ray and . The inverse of the curve is then the locus of as runs over . The point in this construction is called the center of inversion, the circle the circle of inversion, and the radius of inversion. An inversion applied twice is the identity transformation, so the inverse of an inverse curve with respect to the same circle is the original curve. Points on the circle of inversion are fixed by the inversion, so its inverse is itself. Equations The inverse of the point with respect to the unit circle is where :X = \frac,\qquad Y=\frac, or equivalently :x = \frac,\qquad y=\frac. So the inverse of the curve determined by with respect to the unit circle is :f\left(\frac, \frac\right)=0. It is clear from this that inverting an algeb ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Conic Sections
A conic section, conic or a quadratic curve is a curve obtained from a Conical surface, cone's surface intersecting a plane (mathematics), plane. The three types of conic section are the hyperbola, the parabola, and the ellipse; the circle is a special case of the ellipse, though it was sometimes considered a fourth type. The Greek mathematics, ancient Greek mathematicians studied conic sections, culminating around 200 BC with Apollonius of Perga's systematic work on their properties. The conic sections in the Euclidean plane have various distinguishing properties, many of which can be used as alternative definitions. One such property defines a non-circular conic to be the set (mathematics), set of those points whose distances to some particular point, called a ''Focus (geometry), focus'', and some particular line, called a ''directrix'', are in a fixed ratio, called the ''Eccentricity (mathematics), eccentricity''. The type of conic is determined by the value of the ec ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Genus (mathematics)
In mathematics, genus (: genera) has a few different, but closely related, meanings. Intuitively, the genus is the number of "holes" of a surface. A sphere has genus 0, while a torus has genus 1. Topology Orientable surfaces The genus of a connected, orientable surface is an integer representing the maximum number of cuttings along non-intersecting closed simple curves without rendering the resultant manifold disconnected. It is equal to the number of handles on it. Alternatively, it can be defined in terms of the Euler characteristic \chi, via the relationship \chi=2-2g for closed surfaces, where g is the genus. For surfaces with b boundary components, the equation reads \chi=2-2g-b. In layman's terms, the genus is the number of "holes" an object has ("holes" interpreted in the sense of doughnut holes; a hollow sphere would be considered as having zero holes in this sense). A torus has 1 such hole, while a sphere has 0. The green surface pictured above has 2 holes of the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Node (singularity)
In the mathematical field of algebraic geometry, a singular point of an algebraic variety is a point that is 'special' (so, singular), in the geometric sense that at this point the tangent space at the variety may not be regularly defined. In case of varieties defined over the reals, this notion generalizes the notion of local non-flatness. A point of an algebraic variety that is not singular is said to be regular. An algebraic variety that has no singular point is said to be non-singular or smooth. The concept is generalized to smooth schemes in the modern language of scheme theory. Definition A plane curve defined by an implicit equation :F(x,y)=0, where is a smooth function is said to be ''singular'' at a point if the Taylor series of has order at least at this point. The reason for this is that, in differential calculus, the tangent at the point of such a curve is defined by the equation :(x-x_0)F'_x(x_0,y_0) + (y-y_0)F'_y(x_0,y_0)=0, whose left-hand side is the term ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |