HOME
*





Comparison Matrix
In linear algebra, let be a complex matrix. The comparison matrix of complex matrix ''A'' is defined as :\alpha_ = \begin -, a_, &\text i \neq j, \\ , a_, &\text i=j. \end See also * Hurwitz-stable matrix * P-matrix * Perron–Frobenius theorem * Z-matrix * L-matrix * M-matrix * H-matrix (iterative method) In mathematics, an ''H''-matrix is a matrix (mathematics), matrix whose comparison matrix is an M-matrix. It is useful in iterative methods. Definition: Let be a complex matrix. Then comparison matrix ''M''(''A'') of complex matrix ''A'' is def ... References Matrices {{matrix-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Linear Algebra
Linear algebra is the branch of mathematics concerning linear equations such as: :a_1x_1+\cdots +a_nx_n=b, linear maps such as: :(x_1, \ldots, x_n) \mapsto a_1x_1+\cdots +a_nx_n, and their representations in vector spaces and through matrices. Linear algebra is central to almost all areas of mathematics. For instance, linear algebra is fundamental in modern presentations of geometry, including for defining basic objects such as lines, planes and rotations. Also, functional analysis, a branch of mathematical analysis, may be viewed as the application of linear algebra to spaces of functions. Linear algebra is also used in most sciences and fields of engineering, because it allows modeling many natural phenomena, and computing efficiently with such models. For nonlinear systems, which cannot be modeled with linear algebra, it is often used for dealing with first-order approximations, using the fact that the differential of a multivariate function at a point is the line ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Matrix (mathematics)
In mathematics, a matrix (plural matrices) is a rectangular array or table of numbers, symbols, or expressions, arranged in rows and columns, which is used to represent a mathematical object or a property of such an object. For example, \begin1 & 9 & -13 \\20 & 5 & -6 \end is a matrix with two rows and three columns. This is often referred to as a "two by three matrix", a "-matrix", or a matrix of dimension . Without further specifications, matrices represent linear maps, and allow explicit computations in linear algebra. Therefore, the study of matrices is a large part of linear algebra, and most properties and operations of abstract linear algebra can be expressed in terms of matrices. For example, matrix multiplication represents composition of linear maps. Not all matrices are related to linear algebra. This is, in particular, the case in graph theory, of incidence matrices, and adjacency matrices. ''This article focuses on matrices related to linear algebra, an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Springer Science+Business Media
Springer Science+Business Media, commonly known as Springer, is a German multinational publishing company of books, e-books and peer-reviewed journals in science, humanities, technical and medical (STM) publishing. Originally founded in 1842 in Berlin, it expanded internationally in the 1960s, and through mergers in the 1990s and a sale to venture capitalists it fused with Wolters Kluwer and eventually became part of Springer Nature in 2015. Springer has major offices in Berlin, Heidelberg, Dordrecht, and New York City. History Julius Springer founded Springer-Verlag in Berlin in 1842 and his son Ferdinand Springer grew it from a small firm of 4 employees into Germany's then second largest academic publisher with 65 staff in 1872.Chronology
". Springer Science+Business Media.
In 1964, Springer expanded its business internationally, o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hurwitz-stable Matrix
In mathematics, a Hurwitz-stable matrix, or more commonly simply Hurwitz matrix, is a square matrix whose eigenvalues all have strictly negative real part. Some authors also use the term stability matrix. Such matrices play an important role in control theory. Definition A square matrix A is called a Hurwitz matrix if every eigenvalue of A has strictly negative real part, that is, :\operatorname[\lambda_i] < 0\, for each eigenvalue \lambda_i. A is also called a stable matrix, because then the ordinary differential equation, differential equation :\dot x = A x is stability theory, asymptotically stable, that is, x(t)\to 0 as t\to\infty. If G(s) is a (matrix-valued) transfer function, then G is called Hurwitz if the pole (complex analysis), poles of all elements of G have negative real part. Note that it is not necessary that G(s), for a specific argument
[...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


P-matrix
In mathematics, a -matrix is a complex square matrix with every principal minor is positive. A closely related class is that of P_0-matrices, which are the closure of the class of -matrices, with every principal minor \geq 0. Spectra of -matrices By a theorem of Kellogg, the eigenvalues of - and P_0- matrices are bounded away from a wedge about the negative real axis as follows: :If \ are the eigenvalues of an -dimensional -matrix, where n>1, then ::, \arg(u_i), < \pi - \frac,\ i = 1,...,n :If \, u_i \neq 0, i = 1,...,n are the eigenvalues of an -dimensional P_0-matrix, then ::, \arg(u_i), \leq \pi - \frac,\ i = 1,...,n


Remarks

The class of nonsingular ''M''-matrices is a subset of the class of -matrices. More precisely, all matrices that are both -matrices and
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Perron–Frobenius Theorem
In matrix theory, the Perron–Frobenius theorem, proved by and , asserts that a real square matrix with positive entries has a unique largest real eigenvalue and that the corresponding eigenvector can be chosen to have strictly positive components, and also asserts a similar statement for certain classes of nonnegative matrices. This theorem has important applications to probability theory (ergodicity of Markov chains); to the theory of dynamical systems (subshifts of finite type); to economics (Okishio's theorem, Hawkins–Simon condition); to demography ( Leslie population age distribution model); to social networks ( DeGroot learning process); to Internet search engines (PageRank); and even to ranking of football teams. The first to discuss the ordering of players within tournaments using Perron–Frobenius eigenvectors is Edmund Landau. Statement Let positive and non-negative respectively describe matrices with exclusively positive real numbers as elements and matrices ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Z-matrix (mathematics)
In mathematics, the class of ''Z''-matrices are those matrices whose off-diagonal entries are less than or equal to zero; that is, the matrices of the form: :Z=(z_);\quad z_\leq 0, \quad i\neq j. Note that this definition coincides precisely with that of a negated Metzler matrix or quasipositive matrix, thus the term ''quasinegative'' matrix appears from time to time in the literature, though this is rare and usually only in contexts where references to quasipositive matrices are made. The Jacobian of a competitive dynamical system is a ''Z''-matrix by definition. Likewise, if the Jacobian of a cooperative dynamical system is ''J'', then (−''J'') is a ''Z''-matrix. Related classes are ''L''-matrices, ''M''-matrices, ''P''-matrices, ''Hurwitz'' matrices and ''Metzler'' matrices. ''L''-matrices have the additional property that all diagonal entries are greater than zero. M-matrices have several equivalent definitions, one of which is as follows: a ''Z''-matrix is a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


L-matrix
In mathematics, the class of L-matrices are those matrices whose off-diagonal entries are less than or equal to zero and whose diagonal entries are positive; that is, an L-matrix ''L'' satisfies :L=(\ell_);\quad \ell_ > 0; \quad \ell_\leq 0, \quad i\neq j. See also * Z-matrix—every L-matrix is a Z-matrix * Metzler matrix In mathematics, a Metzler matrix is a matrix in which all the off-diagonal components are nonnegative (equal to or greater than zero): : \forall_\, x_ \geq 0. It is named after the American economist Lloyd Metzler. Metzler matrices appear in st ...—the negation of any L-matrix is a Metzler matrix References Matrices {{matrix-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


M-matrix
In mathematics, especially linear algebra, an ''M''-matrix is a ''Z''-matrix with eigenvalues whose real parts are nonnegative. The set of non-singular ''M''-matrices are a subset of the class of ''P''-matrices, and also of the class of inverse-positive matrices (i.e. matrices with inverses belonging to the class of positive matrices). The name ''M''-matrix was seemingly originally chosen by Alexander Ostrowski in reference to Hermann Minkowski, who proved that if a Z-matrix has all of its row sums positive, then the determinant of that matrix is positive.. Characterizations An M-matrix is commonly defined as follows: Definition: Let be a real Z-matrix. That is, where for all . Then matrix ''A'' is also an ''M-matrix'' if it can be expressed in the form , where with , for all , where is at least as large as the maximum of the moduli of the eigenvalues of , and is an identity matrix. For the non-singularity of , according to the Perron–Frobenius theorem, it must ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




H-matrix (iterative Method)
In mathematics, an ''H''-matrix is a matrix (mathematics), matrix whose comparison matrix is an M-matrix. It is useful in iterative methods. Definition: Let be a complex matrix. Then comparison matrix ''M''(''A'') of complex matrix ''A'' is defined as where for all and for all . If ''M''(''A'') is a M-matrix, ''A'' is a ''H''-matrix. Invertible matrix, Invertible H-matrix guarantees convergence of Gauss–Seidel method, Gauss–Seidel iterative methods. See also * Hurwitz-stable matrix * P-matrix * Perron–Frobenius theorem * Z-matrix (mathematics), Z-matrix * L-matrix * M-matrix * Comparison matrix References Matrices {{matrix-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]