HOME





Chetaev Function
The Chetaev instability theorem for dynamical systems states that if there exists, for the system \dot = X(\textbf) with an equilibrium point at the origin, a continuously differentiable function V(x) such that # the origin is a boundary point of the set G = \; # there exists a neighborhood U of the origin such that \dot(\textbf)>0 for all \mathbf \in G \cap U then the origin is an unstable equilibrium point of the system. This theorem is somewhat less restrictive than the Lyapunov instability theorems, since a complete sphere (circle) around the origin for which V and \dot both are of the same sign does not have to be produced. It is named after Nicolai Gurevich Chetaev. Applications Chetaev instability theorem has been used to analyze the unfolding dynamics of proteins under the effect of optical tweezers. See also * Lyapunov function — a function whose existence guarantees stability References * Further reading *{{cite journal , doi=10.4249/scholarpedia.4672, doi-ac ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Nicolai Gurevich Chetaev
Nikolay Gur'yevich Chetaev (23 November 1902 – 17 October 1959) was a Russian Soviet mechanician and mathematician. He was born in Karaduli, Laishevskiy uyezd, Kazan province, Russian Empire (now Tatarstan of Russian Federation) and died in Moscow, USSR. He belongs to the Kazan school of mathematics. Biography N. G. Chetaev graduated from Kazan University in 1924. His doctoral advisor was Professor Dmitri Nikolajewitsch Seiliger. At the suggestion of D. N. Seiliger in 1929 he came to Germany to do his postdoctoral research at Goettingen University and to study the scientific achievements of School of Aerodynamics of Professor Ludwig Prandtl. From 1930 to 1940 N. G. Chetaev was a professor of Kazan University where he created a scientific school of the mathematical theory of stability of motion. The school consisted of thirty one of his doctoral students, direct followers and collaborators, among whom there are such prominent mathematicians as Nikolay Krasovsky and Valentin Ru ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Dynamical System
In mathematics, a dynamical system is a system in which a function describes the time dependence of a point in an ambient space. Examples include the mathematical models that describe the swinging of a clock pendulum, the flow of water in a pipe, the random motion of particles in the air, and the number of fish each springtime in a lake. The most general definition unifies several concepts in mathematics such as ordinary differential equations and ergodic theory by allowing different choices of the space and how time is measured. Time can be measured by integers, by real or complex numbers or can be a more general algebraic object, losing the memory of its physical origin, and the space may be a manifold or simply a set, without the need of a smooth space-time structure defined on it. At any given time, a dynamical system has a state representing a point in an appropriate state space. This state is often given by a tuple of real numbers or by a vector in a geome ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Equilibrium Point
In mathematics, specifically in differential equations, an equilibrium point is a constant solution to a differential equation. Formal definition The point \tilde\in \mathbb^n is an equilibrium point for the differential equation :\frac = \mathbf(t,\mathbf) if \mathbf(t,\tilde)=\mathbf for all t. Similarly, the point \tilde\in \mathbb^n is an equilibrium point (or fixed point) for the difference equation :\mathbf_ = \mathbf(k,\mathbf_k) if \mathbf(k,\tilde)= \tilde for k=0,1,2,\ldots. Equilibria can be classified by looking at the signs of the eigenvalues of the linearization of the equations about the equilibria. That is to say, by evaluating the Jacobian matrix at each of the equilibrium points of the system, and then finding the resulting eigenvalues, the equilibria can be categorized. Then the behavior of the system in the neighborhood of each equilibrium point can be qualitatively determined, (or even quantitatively determined, in some instances), by finding t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Boundary (topology)
In topology and mathematics in general, the boundary of a subset of a topological space is the set of points in the closure of not belonging to the interior of . An element of the boundary of is called a boundary point of . The term boundary operation refers to finding or taking the boundary of a set. Notations used for boundary of a set include \operatorname(S), \operatorname(S), and \partial S. Some authors (for example Willard, in ''General Topology'') use the term frontier instead of boundary in an attempt to avoid confusion with a different definition used in algebraic topology and the theory of manifolds. Despite widespread acceptance of the meaning of the terms boundary and frontier, they have sometimes been used to refer to other sets. For example, ''Metric Spaces'' by E. T. Copson uses the term boundary to refer to Hausdorff's border, which is defined as the intersection of a set with its boundary. Hausdorff also introduced the term residue, which is defi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Neighbourhood (mathematics)
In topology and related areas of mathematics, a neighbourhood (or neighborhood) is one of the basic concepts in a topological space. It is closely related to the concepts of open set and interior. Intuitively speaking, a neighbourhood of a point is a set of points containing that point where one can move some amount in any direction away from that point without leaving the set. Definitions Neighbourhood of a point If X is a topological space and p is a point in X, then a of p is a subset V of X that includes an open set U containing p, p \in U \subseteq V \subseteq X. This is also equivalent to the point p \in X belonging to the topological interior of V in X. The neighbourhood V need be an open subset X, but when V is open in X then it is called an . Some authors have been known to require neighbourhoods to be open, so it is important to note conventions. A set that is a neighbourhood of each of its points is open since it can be expressed as the union of open ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lyapunov Instability Theorem
Lyapunov (, in old-Russian often written Лепунов) is a Russian surname that is sometimes also romanized as Ljapunov, Liapunov or Ljapunow. Notable people with the surname include: * Alexey Lyapunov (1911–1973), Russian mathematician * Aleksandr Lyapunov (1857–1918), son of Mikhail (1820–1868), Russian mathematician and mechanician, after whom the following are named: ** Lyapunov dimension ** Lyapunov equation ** Lyapunov exponent ** Lyapunov function ** Lyapunov fractal ** Lyapunov stability ** Lyapunov's central limit theorem ** Lyapunov time ** Lyapunov vector ** Lyapunov (crater) * Boris Lyapunov (1862–1943), son of Mikhail (1820–1868), Russian expert in Slavic studies * Mikhail Lyapunov (1820–1868), Russian astronomer * Mikhail Nikolaevich Lyapunov (1848–1909), Russian military officer and lawyer * Prokopy Lyapunov (d. 1611), Russian statesman * Sergei Lyapunov (1859–1924), son of Mikhail (1820–1868), Russian composer * Zakhary Lyapunov (d. after 1 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lyapunov Function
In the theory of ordinary differential equations (ODEs), Lyapunov functions, named after Aleksandr Lyapunov, are scalar functions that may be used to prove the stability of an equilibrium of an ODE. Lyapunov functions (also called Lyapunov’s second method for stability) are important to stability theory of dynamical systems and control theory. A similar concept appears in the theory of general state space Markov chains, usually under the name Foster–Lyapunov functions. For certain classes of ODEs, the existence of Lyapunov functions is a necessary and sufficient condition for stability. Whereas there is no general technique for constructing Lyapunov functions for ODEs, in many specific cases the construction of Lyapunov functions is known. For instance, quadratic functions suffice for systems with one state; the solution of a particular linear matrix inequality provides Lyapunov functions for linear systems; and conservation laws can often be used to construct Lyapunov functi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Scholarpedia
''Scholarpedia'' is an English-language wiki-based online encyclopedia with features commonly associated with open-access online academic journals, which aims to have quality content in science and medicine. ''Scholarpedia'' articles are written by invited or approved expert authors and are subject to peer review. ''Scholarpedia'' lists the real names and affiliations of all authors, curators and editors involved in an article: however, the peer review process (which can suggest changes or additions, and has to be satisfied before an article can appear) is anonymous. ''Scholarpedia'' articles are stored in an online repository, and can be cited as conventional journal articles (''Scholarpedia'' has the ISSN number ). ''Scholarpedia''s citation system includes support for revision numbers. The project was created in February 2006 by Eugene M. Izhikevich, while he was a researcher at the Neurosciences Institute, San Diego, California. Izhikevich is also the encyclopedia's editor-i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Theorems In Dynamical Systems
In mathematics, a theorem is a statement that has been proved, or can be proved. The ''proof'' of a theorem is a logical argument that uses the inference rules of a deductive system to establish that the theorem is a logical consequence of the axioms and previously proved theorems. In the mainstream of mathematics, the axioms and the inference rules are commonly left implicit, and, in this case, they are almost always those of Zermelo–Fraenkel set theory with the axiom of choice, or of a less powerful theory, such as Peano arithmetic. A notable exception is Wiles's proof of Fermat's Last Theorem, which involves the Grothendieck universes whose existence requires the addition of a new axiom to the set theory. Generally, an assertion that is explicitly called a theorem is a proved result that is not an immediate consequence of other known theorems. Moreover, many authors qualify as ''theorems'' only the most important results, and use the terms ''lemma'', ''proposition'' and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]