Carnot Battery
A Carnot battery is a type of energy storage system that stores electricity in thermal energy storage. During the charging process, electricity is converted into heat and kept in heat storage. During the discharging process, the stored heat is converted back into electricity. Fritz Marguerre patented the concept of this technology 100 years ago, but its development was recently revitalized, given the increased use of renewable energies and the need to increase the total recovered energy delivered from such sources. In this context, Andre Thess coined the term "Carnot battery" in 2018, prior to the first International Workshop on Carnot Batteries. The term "Carnot battery" is derived from Carnot's theorem, which describes the maximum efficiency of conversion of heat energy into mechanical energy. The word "battery" indicates that the purpose of this technology is to store electricity. The discharge efficiency of Carnot batteries is limited by the Carnot efficiency. The concept o ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Heat Pump
A heat pump is a device that uses electricity to transfer heat from a colder place to a warmer place. Specifically, the heat pump transfers thermal energy using a heat pump and refrigeration cycle, cooling the cool space and warming the warm space. In winter a heat pump can move heat from the cool outdoors to warm a house; the pump may also be designed to move heat from the house to the warmer outdoors in summer. As they transfer heat rather than generating heat, they are more energy-efficient than heating by gas boiler. A gaseous refrigerant is compressed so its pressure and temperature rise. When operating as a heater in cold weather, the warmed gas flows to a heat exchanger in the indoor space where some of its thermal energy is transferred to that indoor space, causing the gas to condense into a liquid. The liquified refrigerant flows to a heat exchanger in the outdoor space where the pressure falls, the liquid evaporates and the temperature of the gas falls. It is no ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Steam Turbine
A steam turbine or steam turbine engine is a machine or heat engine that extracts thermal energy from pressurized steam and uses it to do mechanical work utilising a rotating output shaft. Its modern manifestation was invented by Sir Charles Parsons in 1884. It revolutionized marine propulsion and navigation to a significant extent. Fabrication of a modern steam turbine involves advanced metalwork to form high-grade steel alloys into precision parts using technologies that first became available in the 20th century; continued advances in durability and efficiency of steam turbines remains central to the energy economics of the 21st century. The largest steam turbine ever built is the 1,770 MW Arabelle steam turbine built by Arabelle Solutions (previously GE Steam Power), two units of which will be installed at Hinkley Point C Nuclear Power Station, England. The steam turbine is a form of heat engine that derives much of its improvement in thermodynamic efficiency from the u ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Heat Engine
A heat engine is a system that transfers thermal energy to do mechanical or electrical work. While originally conceived in the context of mechanical energy, the concept of the heat engine has been applied to various other kinds of energy, particularly electrical, since at least the late 19th century. The heat engine does this by bringing a working substance from a higher state temperature to a lower state temperature. A heat source generates thermal energy that brings the working substance to the higher temperature state. The working substance generates work in the working body of the engine while transferring heat to the colder sink until it reaches a lower temperature state. During this process some of the thermal energy is converted into work by exploiting the properties of the working substance. The working substance can be any system with a non-zero heat capacity, but it usually is a gas or liquid. During this process, some heat is normally lost to the surroundings ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Thermoelectric Materials
Thermoelectric materials show the thermoelectric effect in a strong or convenient form. The ''thermoelectric effect'' refers to phenomena by which either a temperature difference creates an electric potential or an electric current creates a temperature difference. These phenomena are known more specifically as the Seebeck effect (creating a voltage from temperature difference), Peltier effect (driving heat flow with an electric current), and Thomson effect (reversible heating or cooling within a conductor when there is both an electric current and a temperature gradient). While all materials have a nonzero thermoelectric effect, in most materials it is too small to be useful. However, low-cost materials that have a sufficiently strong thermoelectric effect (and other required properties) are also considered for applications including power generation and refrigeration. The most commonly used thermoelectric material is based on bismuth telluride (). Thermoelectric materials are ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Latent Heat Thermal Energy Storage
Energy storage is the capture of energy produced at one time for use at a later time to reduce imbalances between energy demand and energy production. A device that stores energy is generally called an Accumulator (energy), accumulator or Battery (electricity), battery. Energy comes in multiple forms including radiation, chemical energy, chemical, gravitational potential energy, gravitational potential, Electric potential energy, electrical potential, electricity, elevated temperature, latent heat and kinetic energy, kinetic. Energy storage involves converting energy from forms that are difficult to store to more conveniently or economically storable forms. Some technologies provide short-term energy storage, while others can endure for much longer. Bulk energy storage is currently dominated by hydroelectric dams, both conventional as well as pumped. Grid energy storage is a collection of methods used for energy storage on a large scale within an electrical power grid. Common e ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Liquid Air
Liquid Air was the marque of an automobile planned by Liquid Air Power and Automobile Co. of Boston and New York City in 1899. page 1432 A factory location was acquired in Boston, Massachusetts in 1899 and Liquid Air claimed they would construct a car that would run a hundred miles on liquid air. In 1901 the company had gone into receivership with declared capital stock of $1,500,000 but assets of only $7,500. See also *Alternative fuel vehicle *Compressed-air vehicle *Liquid nitrogen vehicle References {{reflist Defunct motor vehicle manufacturers of the United States Alternative fuels Veteran vehicles 1900s cars Vehicle manufacturing companies established in 1899 Vehicle manufacturing companies disestablished in 1901 Motor vehicle manufacturers based in Massachusetts Motor vehicle manufacturers based in New York (state) ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Rock (geology)
In geology, rock (or stone) is any naturally occurring solid mass or aggregate of minerals or mineraloid matter. It is categorized by the minerals included, its Chemical compound, chemical composition, and the way in which it is formed. Rocks form the Earth's outer solid layer, the Earth's crust, crust, and most of its interior, except for the liquid Earth's outer core, outer core and pockets of magma in the asthenosphere. The study of rocks involves multiple subdisciplines of geology, including petrology and mineralogy. It may be limited to rocks found on Earth, or it may include planetary geology that studies the rocks of other celestial objects. Rocks are usually grouped into three main groups: igneous rocks, sedimentary rocks and metamorphic rocks. Igneous rocks are formed when magma cools in the Earth's crust, or lava cools on the ground surface or the seabed. Sedimentary rocks are formed by diagenesis and lithification of sediments, which in turn are formed by the weathe ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Molten Salt
Molten salt is salt which is solid at standard temperature and pressure but liquified due to elevated temperature. A salt that is liquid even at standard temperature and pressure is usually called a room-temperature ionic liquid, and molten salts are technically a class of ionic liquids. Examples As a reference, molten sodium chloride, table salt has a melting point (m.p.) of . A variety of eutectic mixtures have been developed with lower melting points: Chlorides *Lithium chloride and potassium chloride, m.p. . Nitrates Alkali metal nitrates are relatively low melting and thermally stable. The least stable, (m.p. ) decomposes only at . At the other extreme, cesium nitrate melts at and decomposes at 584 °C. *60:40 mixture of sodium nitrate and potassium nitrate is a liquid between . It has a heat of fusion of 161 J/g, and a heat capacity of 1.53 J/(g·K). *1:1 mixture :, m.p. . *40:7:53 ::, m. p. , stable to . Uses Molten salts have a variety of uses. Production of magnes ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Latent Heat
Latent heat (also known as latent energy or heat of transformation) is energy released or absorbed, by a body or a thermodynamic system, during a constant-temperature process—usually a first-order phase transition, like melting or condensation. Latent heat can be understood as hidden energy which is supplied or extracted to change the state of a substance without changing its temperature or pressure. This includes the latent heat of fusion (solid to liquid), the latent heat of vaporization (liquid to gas) and the latent heat of sublimation (solid to gas). The term was introduced around 1762 by Scottish chemist Joseph Black. Black used the term in the context of calorimetry where a heat transfer caused a volume change in a body while its temperature was constant. In contrast to latent heat, sensible heat is energy transferred as heat, with a resultant temperature change in a body. Usage The terms ''sensible heat'' and ''latent heat'' refer to energy transferred between a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Sensible Heat
Sensible heat is heat exchanged by a body or thermodynamic system in which the exchange of heat changes the temperature of the body or system, and some macroscopic variables of the body or system, but leaves unchanged certain other macroscopic variables of the body or system, such as volume or pressure. Usage The term is used in contrast to a latent heat, which is the amount of heat exchanged that is hidden, meaning it occurs without change of temperature. For example, during a phase change such as the melting of ice, the temperature of the system containing the ice and the liquid is constant until all ice has melted. Latent and sensible heat are complementary terms. The sensible heat of a thermodynamic process may be calculated as the product of the body's mass (''m'') with its specific heat capacity (''c'') and the change in temperature (\Delta T): : Q_ = m c \Delta T \, . ''Sensible heat'' and ''latent heat'' are not special forms of energy. Rather, they describe exchanges ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Liquefaction Of Gases
Liquefaction of gases is physical conversion of a gas into a liquid state (condensation). The liquefaction of gases is a complicated process that uses various compressions and expansions to achieve high pressures and very low temperatures, using, for example, turboexpanders. Uses Liquefaction processes are used for scientific, industrial and commercial purposes. Many gases can be put into a liquid state at normal atmospheric pressure by simple cooling; a few, such as carbon dioxide, require pressurization as well. Liquefaction is used for analyzing the fundamental properties of gas molecules (intermolecular forces), or for the storage of gases, for example: LPG, and in refrigeration and air conditioning. There the gas is liquefied in the '' condenser'', where the heat of vaporization is released, and evaporated in the ''evaporator,'' where the heat of vaporization is absorbed. Ammonia was the first such refrigerant, and is still in widespread use in industrial refrigeration, bu ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |