HOME





Calabi Flow
In the mathematical fields of differential geometry and geometric analysis, the Calabi flow is a geometric flow which deforms a Kähler metric on a complex manifold. Precisely, given a Kähler manifold , the Calabi flow is given by: :\frac=\frac, where is a mapping from an open interval into the collection of all Kähler metrics on , is the scalar curvature of the individual Kähler metrics, and the indices correspond to arbitrary holomorphic coordinates . This is a fourth-order geometric flow, as the right-hand side of the equation involves fourth derivatives of . The Calabi flow was introduced by Eugenio Calabi in 1982 as a suggestion for the construction of extremal Kähler metrics, which were also introduced in the same paper. It is the gradient flow of the '; extremal Kähler metrics are the critical points of the Calabi functional. A convergence theorem for the Calabi flow was found by Piotr Chruściel in the case that has complex dimension equal to one. Xiuxiong Che ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Differential Geometry
Differential geometry is a Mathematics, mathematical discipline that studies the geometry of smooth shapes and smooth spaces, otherwise known as smooth manifolds. It uses the techniques of Calculus, single variable calculus, vector calculus, linear algebra and multilinear algebra. The field has its origins in the study of spherical geometry as far back as classical antiquity, antiquity. It also relates to astronomy, the geodesy of the Earth, and later the study of hyperbolic geometry by Nikolai Lobachevsky, Lobachevsky. The simplest examples of smooth spaces are the Differential geometry of curves, plane and space curves and Differential geometry of surfaces, surfaces in the three-dimensional Euclidean space, and the study of these shapes formed the basis for development of modern differential geometry during the 18th and 19th centuries. Since the late 19th century, differential geometry has grown into a field concerned more generally with geometric structures on differentiable ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Geometric Analysis
Geometric analysis is a mathematical discipline where tools from differential equations, especially elliptic partial differential equations (PDEs), are used to establish new results in differential geometry and differential topology. The use of linear elliptic PDEs dates at least as far back as Hodge theory. More recently, it refers largely to the use of nonlinear partial differential equations to study geometric and topological properties of spaces, such as submanifolds of Euclidean space, Riemannian manifolds, and symplectic manifolds. This approach dates back to the work by Tibor Radó and Jesse Douglas on minimal surfaces, John Forbes Nash Jr. on isometric embeddings of Riemannian manifolds into Euclidean space, work by Louis Nirenberg on the Minkowski problem and the Weyl problem, and work by Aleksandr Danilovich Aleksandrov and Aleksei Pogorelov on convex hypersurfaces. In the 1980s fundamental contributions by Karen Uhlenbeck,Jackson, Allyn. (2019)Founder of geom ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Geometric Flow
In the mathematical field of differential geometry, a geometric flow, also called a geometric evolution equation, is a type of partial differential equation for a geometric object such as a Riemannian metric or an embedding. It is not a term with a formal meaning, but is typically understood to refer to parabolic partial differential equations. Certain geometric flows arise as the gradient flow associated with a functional on a manifold which has a geometric interpretation, usually associated with some extrinsic or intrinsic curvature. Such flows are fundamentally related to the calculus of variations, and include mean curvature flow and Yamabe flow. Examples Extrinsic Extrinsic geometric flows are flows on embedded submanifolds, or more generally immersed submanifolds. In general they change both the Riemannian metric and the immersion. * Mean curvature flow, as in soap films; critical points are minimal surfaces * Curve-shortening flow, the one-dimensional case of the mean curva ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Kähler Metric
Kähler may refer to: People *Birgit Kähler (born 1970), German high jumper * Erich Kähler (1906–2000), German mathematician * Heinz Kähler (1905–1974), German art historian and archaeologist * Luise Kähler (1869–1955), German trade union leader and politician * Martin Kähler (1835–1912), German theologian * Otto Kähler (1894–1967), German admiral * Wilhelmine Kähler (1864–1941), German politician Other * Kähler Keramik, a Danish ceramics manufacturer *Kähler manifold In mathematics and especially differential geometry, a Kähler manifold is a manifold with three mutually compatible structures: a complex structure, a Riemannian structure, and a symplectic structure. The concept was first studied by Jan Arnol ..., an important geometric complex manifold See also * Kahler (other) {{disambiguation, surname Occupational surnames ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Complex Manifold
In differential geometry and complex geometry, a complex manifold is a manifold with a ''complex structure'', that is an atlas (topology), atlas of chart (topology), charts to the open unit disc in the complex coordinate space \mathbb^n, such that the transition maps are Holomorphic function, holomorphic. The term "complex manifold" is variously used to mean a complex manifold in the sense above (which can be specified as an ''integrable'' complex manifold) or an almost complex manifold, ''almost'' complex manifold. Implications of complex structure Since holomorphic functions are much more rigid than smooth functions, the theories of smooth manifold, smooth and complex manifolds have very different flavors: compact space, compact complex manifolds are much closer to algebraic variety, algebraic varieties than to differentiable manifolds. For example, the Whitney embedding theorem tells us that every smooth ''n''-dimensional manifold can be Embedding, embedded as a smooth subma ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]




Kähler Manifold
In mathematics and especially differential geometry, a Kähler manifold is a manifold with three mutually compatible structures: a complex structure, a Riemannian structure, and a symplectic structure. The concept was first studied by Jan Arnoldus Schouten and David van Dantzig in 1930, and then introduced by Erich Kähler in 1933. The terminology has been fixed by André Weil. Kähler geometry refers to the study of Kähler manifolds, their geometry and topology, as well as the study of structures and constructions that can be performed on Kähler manifolds, such as the existence of special connections like Hermitian Yang–Mills connections, or special metrics such as Kähler–Einstein metrics. Every smooth complex projective variety is a Kähler manifold. Hodge theory is a central part of algebraic geometry, proved using Kähler metrics. Definitions Since Kähler manifolds are equipped with several compatible structures, they can be described from different points of vi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Scalar Curvature
In the mathematical field of Riemannian geometry, the scalar curvature (or the Ricci scalar) is a measure of the curvature of a Riemannian manifold. To each point on a Riemannian manifold, it assigns a single real number determined by the geometry of the metric near that point. It is defined by a complicated explicit formula in terms of partial derivatives of the metric components, although it is also characterized by the volume of infinitesimally small geodesic balls. In the context of the differential geometry of surfaces, the scalar curvature is twice the Gaussian curvature, and completely characterizes the curvature of a surface. In higher dimensions, however, the scalar curvature only represents one particular part of the Riemann curvature tensor. The definition of scalar curvature via partial derivatives is also valid in the more general setting of pseudo-Riemannian manifolds. This is significant in general relativity, where scalar curvature of a Lorentzian metric is one of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Derivative
In mathematics, the derivative is a fundamental tool that quantifies the sensitivity to change of a function's output with respect to its input. The derivative of a function of a single variable at a chosen input value, when it exists, is the slope of the tangent line to the graph of the function at that point. The tangent line is the best linear approximation of the function near that input value. For this reason, the derivative is often described as the instantaneous rate of change, the ratio of the instantaneous change in the dependent variable to that of the independent variable. The process of finding a derivative is called differentiation. There are multiple different notations for differentiation. '' Leibniz notation'', named after Gottfried Wilhelm Leibniz, is represented as the ratio of two differentials, whereas ''prime notation'' is written by adding a prime mark. Higher order notations represent repeated differentiation, and they are usually denoted in Leib ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Eugenio Calabi
Eugenio Calabi (May 11, 1923 – September 25, 2023) was an Italian-born American mathematician and the Thomas A. Scott Professor of Mathematics at the University of Pennsylvania, specializing in differential geometry, partial differential equations and their applications. Early life and education Calabi was born in Milan, Italy on May 11, 1923, into a Jewish family. His sister was the journalist Tullia Zevi Calabi. In 1938, the family left Italy because of the racial laws, and in 1939 arrived in the United States. In the fall of 1939, aged only 16, Calabi enrolled at the Massachusetts Institute of Technology, studying chemical engineering. His studies were interrupted when he was drafted in the US military in 1943 and served during World War II. Upon his discharge in 1946, Calabi was able to finish his bachelor's degree under the G.I. Bill, and was a Putnam Fellow. He received a master's degree in mathematics from the University of Illinois Urbana-Champaign in 1947 and his ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Extremal Kähler Metric
In mathematical analysis, the maximum and minimum of a function are, respectively, the greatest and least value taken by the function. Known generically as extremum, they may be defined either within a given range (the ''local'' or ''relative'' extrema) or on the entire domain (the ''global'' or ''absolute'' extrema) of a function. Pierre de Fermat was one of the first mathematicians to propose a general technique, adequality, for finding the maxima and minima of functions. As defined in set theory, the maximum and minimum of a set are the greatest and least elements in the set, respectively. Unbounded infinite sets, such as the set of real numbers, have no minimum or maximum. In statistics, the corresponding concept is the sample maximum and minimum. Definition A real-valued function ''f'' defined on a domain ''X'' has a global (or absolute) maximum point at ''x''∗, if for all ''x'' in ''X''. Similarly, the function has a global (or absolute) minimum point at ''x''∗, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Critical Point (mathematics)
In mathematics, a critical point is the argument of a function where the function derivative is zero (or undefined, as specified below). The value of the function at a critical point is a . More specifically, when dealing with functions of a real variable, a critical point is a point in the domain of the function where the function derivative is equal to zero (also known as a ''stationary point'') or where the function is not differentiable. Similarly, when dealing with complex variables, a critical point is a point in the function's domain where its derivative is equal to zero (or the function is not ''holomorphic''). Likewise, for a function of several real variables, a critical point is a value in its domain where the gradient norm is equal to zero (or undefined). This sort of definition extends to differentiable maps between and a critical point being, in this case, a point where the rank of the Jacobian matrix is not maximal. It extends further to differentiable ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]




Xiuxiong Chen
Xiuxiong Chen () is a Chinese-American mathematician whose research concerns differential geometry and differential equations. Professor at Stony Brook University since 2010, he was elected a Fellow of the American Mathematical Society in 2015 and awarded the Oswald Veblen Prize in Geometry in 2019. In 2019, he was awarded the Simons Investigator award. Biography Chen was born in Qingtian County, Zhejiang, China. He entered the Department of Mathematics of the University of Science and Technology of China in 1982, and graduated in 1987. He subsequently studied under Peng Jiagui (彭家贵) at the Graduate School of the Chinese Academy of Sciences, where he earned his master's degree. In 1989, he moved to the United States to study at the University of Pennsylvania. The last doctoral student of Eugenio Calabi, he obtained his Ph.D. in mathematics in 1994, with his dissertation on "Extremal Hermitian Matrices with Curvature Distortion in a Riemann Surface". Chen was an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]