HOME

TheInfoList



OR:

In
differential geometry Differential geometry is a Mathematics, mathematical discipline that studies the geometry of smooth shapes and smooth spaces, otherwise known as smooth manifolds. It uses the techniques of Calculus, single variable calculus, vector calculus, lin ...
and complex geometry, a complex manifold is a manifold with a ''complex structure'', that is an
atlas An atlas is a collection of maps; it is typically a bundle of world map, maps of Earth or of a continent or region of Earth. Advances in astronomy have also resulted in atlases of the celestial sphere or of other planets. Atlases have traditio ...
of charts to the open unit disc in the complex coordinate space \mathbb^n, such that the transition maps are holomorphic. The term "complex manifold" is variously used to mean a complex manifold in the sense above (which can be specified as an ''integrable'' complex manifold) or an ''almost'' complex manifold.


Implications of complex structure

Since
holomorphic function In mathematics, a holomorphic function is a complex-valued function of one or more complex variables that is complex differentiable in a neighbourhood of each point in a domain in complex coordinate space . The existence of a complex de ...
s are much more rigid than smooth functions, the theories of smooth and complex manifolds have very different flavors: compact complex manifolds are much closer to algebraic varieties than to differentiable manifolds. For example, the Whitney embedding theorem tells us that every smooth ''n''-dimensional manifold can be embedded as a smooth submanifold of R2''n'', whereas it is "rare" for a complex manifold to have a holomorphic embedding into C''n''. Consider for example any compact connected complex manifold ''M'': any holomorphic function on it is constant by the maximum modulus principle. Now if we had a holomorphic embedding of ''M'' into C''n'', then the coordinate functions of C''n'' would restrict to nonconstant holomorphic functions on ''M'', contradicting compactness, except in the case that ''M'' is just a point. Complex manifolds that can be embedded in C''n'' are called Stein manifolds and form a very special class of manifolds including, for example, smooth complex affine algebraic varieties. The classification of complex manifolds is much more subtle than that of differentiable manifolds. For example, while in dimensions other than four, a given topological manifold has at most finitely many smooth structures, a topological manifold supporting a complex structure can and often does support uncountably many complex structures. Riemann surfaces, two dimensional manifolds equipped with a complex structure, which are topologically classified by the
genus Genus (; : genera ) is a taxonomic rank above species and below family (taxonomy), family as used in the biological classification of extant taxon, living and fossil organisms as well as Virus classification#ICTV classification, viruses. In bino ...
, are an important example of this phenomenon. The set of complex structures on a given orientable surface, modulo biholomorphic equivalence, itself forms a complex algebraic variety called a moduli space, the structure of which remains an area of active research. Since the transition maps between charts are biholomorphic, complex manifolds are, in particular, smooth and canonically oriented (not just orientable: a biholomorphic map to (a subset of) C''n'' gives an orientation, as biholomorphic maps are orientation-preserving).


Examples of complex manifolds

* Riemann surfaces. * Calabi–Yau manifolds. * The Cartesian product of two complex manifolds. * The inverse image of any noncritical value of a holomorphic map.


Smooth complex algebraic varieties

Smooth complex algebraic varieties are complex manifolds, including: * Complex vector spaces. * Complex projective spaces, P''n''(C). * Complex Grassmannians. * Complex
Lie groups In mathematics, a Lie group (pronounced ) is a group that is also a differentiable manifold, such that group multiplication and taking inverses are both differentiable. A manifold is a space that locally resembles Euclidean space, whereas ...
such as GL(''n'', C) or Sp(''n'', C).


Simply connected

The simply connected 1-dimensional complex manifolds are isomorphic to either: * Δ, the unit disk in C * C, the complex plane * Ĉ, the Riemann sphere Note that there are inclusions between these as Δ ⊆ C ⊆ Ĉ, but that there are no non-constant holomorphic maps in the other direction, by Liouville's theorem.


Disc vs. space vs. polydisc

The following spaces are different as complex manifolds, demonstrating the more rigid geometric character of complex manifolds (compared to smooth manifolds): * complex space \mathbb^n. * the unit disc or open ball ::\left \. * the polydisc ::\left \.


Almost complex structures

An almost complex structure on a real 2n-manifold is a GL(''n'', C)-structure (in the sense of G-structures) – that is, the tangent bundle is equipped with a linear complex structure. Concretely, this is an endomorphism of the
tangent bundle A tangent bundle is the collection of all of the tangent spaces for all points on a manifold, structured in a way that it forms a new manifold itself. Formally, in differential geometry, the tangent bundle of a differentiable manifold M is ...
whose square is −''I''; this endomorphism is analogous to multiplication by the imaginary number ''i'', and is denoted ''J'' (to avoid confusion with the identity matrix ''I''). An almost complex manifold is necessarily even-dimensional. An almost complex structure is ''weaker'' than a complex structure: any complex manifold has an almost complex structure, but not every almost complex structure comes from a complex structure. Note that every even-dimensional real manifold has an almost complex structure defined locally from the local coordinate chart. The question is whether this almost complex structure can be defined globally. An almost complex structure that comes from a complex structure is called integrable, and when one wishes to specify a complex structure as opposed to an almost complex structure, one says an ''integrable'' complex structure. For integrable complex structures the so-called Nijenhuis tensor vanishes. This tensor is defined on pairs of vector fields, ''X'', ''Y'' by :N_J(X,Y) = ,Y+ J X,Y+ J ,JY X,JY . For example, the 6-dimensional
sphere A sphere (from Ancient Greek, Greek , ) is a surface (mathematics), surface analogous to the circle, a curve. In solid geometry, a sphere is the Locus (mathematics), set of points that are all at the same distance from a given point in three ...
S6 has a natural almost complex structure arising from the fact that it is the orthogonal complement of ''i'' in the unit sphere of the octonions, but this is not a complex structure. (The question of whether it has a complex structure is known as the ''Hopf problem,'' after Heinz Hopf.) Using an almost complex structure we can make sense of holomorphic maps and ask about the existence of holomorphic coordinates on the manifold. The existence of holomorphic coordinates is equivalent to saying the manifold is complex (which is what the chart definition says). Tensoring the tangent bundle with the
complex number In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the for ...
s we get the ''complexified'' tangent bundle, on which multiplication by complex numbers makes sense (even if we started with a real manifold). The eigenvalues of an almost complex structure are ±''i'' and the eigenspaces form sub-bundles denoted by ''T''0,1''M'' and ''T''1,0''M''. The Newlander–Nirenberg theorem shows that an almost complex structure is actually a complex structure precisely when these subbundles are ''involutive'', i.e., closed under the Lie bracket of vector fields, and such an almost complex structure is called integrable.


Kähler and Calabi–Yau manifolds

One can define an analogue of a Riemannian metric for complex manifolds, called a Hermitian metric. Like a Riemannian metric, a Hermitian metric consists of a smoothly varying, positive definite inner product on the tangent bundle, which is Hermitian with respect to the complex structure on the tangent space at each point. As in the Riemannian case, such metrics always exist in abundance on any complex manifold. If the skew symmetric part of such a metric is symplectic, i.e. closed and nondegenerate, then the metric is called Kähler. Kähler structures are much more difficult to come by and are much more rigid. Examples of Kähler manifolds include smooth projective varieties and more generally any complex submanifold of a Kähler manifold. The Hopf manifolds are examples of complex manifolds that are not Kähler. To construct one, take a complex vector space minus the origin and consider the action of the group of integers on this space by multiplication by exp(''n''). The quotient is a complex manifold whose first Betti number is one, so by the Hodge theory, it cannot be Kähler. A Calabi–Yau manifold can be defined as a compact Ricci-flat Kähler manifold or equivalently one whose first Chern class vanishes.


See also

*
Complex dimension In mathematics, complex dimension usually refers to the dimension of a complex manifold or a complex algebraic variety. These are spaces in which the local neighborhoods of points (or of non-singular points in the case of a variety) are modeled on ...
* Complex analytic variety * Quaternionic manifold * Real-complex manifold


Footnotes


References

* {{DEFAULTSORT:Complex Manifold Differential geometry