HOME





Boxcar Function
In mathematics, a boxcar function is any function which is zero over the entire real line except for a single interval where it is equal to a constant, ''A''. The function is named after its graph's resemblance to a boxcar, a type of railroad car. The boxcar function can be expressed in terms of the uniform distribution as \operatorname(x)= (b-a)A\,f(a,b;x) = A(H(x-a) - H(x-b)), where is the uniform distribution of ''x'' for the interval and H(x) is the Heaviside step function. As with most such discontinuous functions, there is a question of the value at the transition points. These values are probably best chosen for each individual application. When a boxcar function is selected as the impulse response of a filter, the result is a simple moving average filter, whose frequency response is a sinc-in-frequency, a type of low-pass filter. See also * Boxcar averager * Rectangular function * Step function In mathematics, a function on the real numbers is called a step fu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Digital Filter
In signal processing, a digital filter is a system that performs mathematical operations on a Sampling (signal processing), sampled, discrete-time signal to reduce or enhance certain aspects of that signal. This is in contrast to the other major type of electronic filter, the analog filter, which is typically an electronic circuit operating on continuous-time analog signals. A digital filter system usually consists of an analog-to-digital converter (ADC) to sample the input signal, followed by a microprocessor and some peripheral components such as memory to store data and filter coefficients etc. Program Instructions (software) running on the microprocessor implement the digital filter by performing the necessary mathematical operations on the numbers received from the ADC. In some high performance applications, an FPGA or ASIC is used instead of a general purpose microprocessor, or a specialized digital signal processor (DSP) with specific paralleled architecture for expedi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Step Function
In mathematics, a function on the real numbers is called a step function if it can be written as a finite linear combination of indicator functions of intervals. Informally speaking, a step function is a piecewise constant function having only finitely many pieces. Definition and first consequences A function f\colon \mathbb \rightarrow \mathbb is called a step function if it can be written as :f(x) = \sum\limits_^n \alpha_i \chi_(x), for all real numbers x where n\ge 0, \alpha_i are real numbers, A_i are intervals, and \chi_A is the indicator function of A: :\chi_A(x) = \begin 1 & \text x \in A \\ 0 & \text x \notin A \\ \end In this definition, the intervals A_i can be assumed to have the following two properties: # The intervals are pairwise disjoint: A_i \cap A_j = \emptyset for i \neq j # The union of the intervals is the entire real line: \bigcup_^n A_i = \mathbb R. Indeed, if that is not the case to start with, a different set of intervals can be picked for ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Rectangular Function
The rectangular function (also known as the rectangle function, rect function, Pi function, Heaviside Pi function, gate function, unit pulse, or the normalized boxcar function) is defined as \operatorname\left(\frac\right) = \Pi\left(\frac\right) = \left\{\begin{array}{rl} 0, & \text{if } , t, > \frac{a}{2} \\ \frac{1}{2}, & \text{if } , t, = \frac{a}{2} \\ 1, & \text{if } , t, \frac{1}{2} \\ \frac{1}{2} & \mbox{if } , t, = \frac{1}{2} \\ 1 & \mbox{if } , t, < \frac{1}{2}. \\ \end{cases}


Dirac delta function

The rectangle function can be used to represent the \delta (x). Specifically,\delta (x) = \lim_{a \to 0} \frac{1}{a}\operatorname{rect}\left(\frac{x}{a}\right).For a function g(x), its average over the w ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Boxcar Averager
A boxcar averager, gated integrator or boxcar integrator is an electronic test instrument that integral, integrates the signal input voltage after a defined waiting time (trigger delay) over a specified period of time (gate width) and then averages over multiple integration results (samples) – for a mathematical description see boxcar function. The main purpose of this measurement technique is to improve signal to noise ratio in pulsed experiments with often low duty cycle by the following three mechanisms: 1) signal integration acts as a first averaging step that strongly suppresses noise components with a frequency of the reciprocal gate width and higher, 2) time-domain based selection of signal parts that actually carry information of interest and neglect of all signal parts where only noise is present, and 3) averaging over a defined number of periods provides low-pass filtering and convenient adjustment of time resolution. Similar to lock-in amplifiers, boxcar averagers ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Low-pass Filter
A low-pass filter is a filter that passes signals with a frequency lower than a selected cutoff frequency and attenuates signals with frequencies higher than the cutoff frequency. The exact frequency response of the filter depends on the filter design. The filter is sometimes called a high-cut filter, or treble-cut filter in audio applications. A low-pass filter is the complement of a high-pass filter. In optics, high-pass and low-pass may have different meanings, depending on whether referring to the frequency or wavelength of light, since these variables are inversely related. High-pass frequency filters would act as low-pass wavelength filters, and vice versa. For this reason, it is a good practice to refer to wavelength filters as ''short-pass'' and ''long-pass'' to avoid confusion, which would correspond to ''high-pass'' and ''low-pass'' frequencies. Low-pass filters exist in many different forms, including electronic circuits such as a '' hiss filter'' used in audio, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Sinc Filter
In signal processing, a sinc filter can refer to either a sinc-in-time filter whose impulse response is a sinc function and whose frequency response is rectangular, or to a sinc-in-frequency filter whose impulse response is rectangular and whose frequency response is a sinc function. Calling them according to which domain the filter resembles a sinc avoids confusion. If the domain is unspecified, sinc-in-time is often assumed, or context hopefully can infer the correct domain. Sinc-in-time Sinc-in-time is an ideal filter that removes all frequency components above a given cutoff frequency, without attenuating lower frequencies, and has linear phase response. It may thus be considered a ''brick-wall filter'' or ''rectangular filter.'' Its impulse response is a sinc function in the time domain: \frac while its frequency response is a rectangular function: :H(f) = \operatorname \left( \frac \right) = \begin 0, & \text , f, > B, \\ \frac, & \text , f, = B, \\ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Frequency Response
In signal processing and electronics, the frequency response of a system is the quantitative measure of the magnitude and Phase (waves), phase of the output as a function of input frequency. The frequency response is widely used in the design and analysis of systems, such as audio system, audio and control systems, where they simplify mathematical analysis by converting governing differential equations into algebraic equations. In an audio system, it may be used to minimize audible distortion by designing components (such as microphones, Audio power amplifier, amplifiers and loudspeakers) so that the overall response is as flat (uniform) as possible across the system's Bandwidth (signal processing), bandwidth. In control systems, such as a vehicle's cruise control, it may be used to assess system Stability theory, stability, often through the use of Bode plots. Systems with a specific frequency response can be designed using analog filter, analog and digital filters. The frequency ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Simple Moving Average
In statistics, a moving average (rolling average or running average or moving mean or rolling mean) is a calculation to analyze data points by creating a series of averages of different selections of the full data set. Variations include: simple, cumulative, or weighted forms. Mathematically, a moving average is a type of convolution. Thus in signal processing it is viewed as a low-pass finite impulse response filter. Because the boxcar function outlines its filter coefficients, it is called a boxcar filter. It is sometimes followed by downsampling. Given a series of numbers and a fixed subset size, the first element of the moving average is obtained by taking the average of the initial fixed subset of the number series. Then the subset is modified by "shifting forward"; that is, excluding the first number of the series and including the next value in the series. A moving average is commonly used with time series data to smooth out short-term fluctuations and highlight longer ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Impulse Response
In signal processing and control theory, the impulse response, or impulse response function (IRF), of a dynamic system is its output when presented with a brief input signal, called an impulse (). More generally, an impulse response is the reaction of any dynamic system in response to some external change. In both cases, the impulse response describes the reaction of the system as a function of time (or possibly as a function of some other independent variable that parameterizes the dynamic behavior of the system). In all these cases, the dynamic system and its impulse response may be actual physical objects, or may be mathematical systems of equations describing such objects. Since the impulse function contains all frequencies (see the Fourier transform of the Dirac delta function, showing infinite frequency bandwidth that the Dirac delta function has), the impulse response defines the response of a linear time-invariant system for all frequencies. Mathematical considerat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Continuous Function
In mathematics, a continuous function is a function such that a small variation of the argument induces a small variation of the value of the function. This implies there are no abrupt changes in value, known as '' discontinuities''. More precisely, a function is continuous if arbitrarily small changes in its value can be assured by restricting to sufficiently small changes of its argument. A discontinuous function is a function that is . Until the 19th century, mathematicians largely relied on intuitive notions of continuity and considered only continuous functions. The epsilon–delta definition of a limit was introduced to formalize the definition of continuity. Continuity is one of the core concepts of calculus and mathematical analysis, where arguments and values of functions are real and complex numbers. The concept has been generalized to functions between metric spaces and between topological spaces. The latter are the most general continuous functions, and their d ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]