HOME

TheInfoList



OR:

In mathematics, a function on the
real number In mathematics, a real number is a number that can be used to measurement, measure a ''continuous'' one-dimensional quantity such as a distance, time, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small var ...
s is called a step function if it can be written as a finite linear combination of
indicator function In mathematics, an indicator function or a characteristic function of a subset of a set is a function that maps elements of the subset to one, and all other elements to zero. That is, if is a subset of some set , one has \mathbf_(x)=1 if x ...
s of intervals. Informally speaking, a step function is a
piecewise In mathematics, a piecewise-defined function (also called a piecewise function, a hybrid function, or definition by cases) is a function defined by multiple sub-functions, where each sub-function applies to a different interval in the domain. P ...
constant function having only finitely many pieces.


Definition and first consequences

A function f\colon \mathbb \rightarrow \mathbb is called a step function if it can be written as :f(x) = \sum\limits_^n \alpha_i \chi_(x), for all real numbers x where n\ge 0, \alpha_i are real numbers, A_i are intervals, and \chi_A is the
indicator function In mathematics, an indicator function or a characteristic function of a subset of a set is a function that maps elements of the subset to one, and all other elements to zero. That is, if is a subset of some set , one has \mathbf_(x)=1 if x ...
of A: :\chi_A(x) = \begin 1 & \text x \in A \\ 0 & \text x \notin A \\ \end In this definition, the intervals A_i can be assumed to have the following two properties: # The intervals are pairwise disjoint: A_i \cap A_j = \emptyset for i \neq j # The union of the intervals is the entire real line: \bigcup_^n A_i = \mathbb R. Indeed, if that is not the case to start with, a different set of intervals can be picked for which these assumptions hold. For example, the step function :f = 4 \chi_ + 3 \chi_ can be written as :f = 0\chi_ +4 \chi_ +7 \chi_ + 3 \chi_+0\chi_.


Variations in the definition

Sometimes, the intervals are required to be right-open or allowed to be singleton. The condition that the collection of intervals must be finite is often dropped, especially in school mathematics, though it must still be locally finite, resulting in the definition of piecewise constant functions.


Examples

* A constant function is a trivial example of a step function. Then there is only one interval, A_0=\mathbb R. * The sign function , which is −1 for negative numbers and +1 for positive numbers, and is the simplest non-constant step function. * The Heaviside function , which is 0 for negative numbers and 1 for positive numbers, is equivalent to the sign function, up to a shift and scale of range (H = (\sgn + 1)/2). It is the mathematical concept behind some test signals, such as those used to determine the step response of a
dynamical system In mathematics, a dynamical system is a system in which a function describes the time dependence of a point in an ambient space. Examples include the mathematical models that describe the swinging of a clock pendulum, the flow of water i ...
. * The rectangular function, the normalized boxcar function, is used to model a unit pulse.


Non-examples

* The integer part function is not a step function according to the definition of this article, since it has an infinite number of intervals. However, some authors also define step functions with an infinite number of intervals.


Properties

* The sum and product of two step functions is again a step function. The product of a step function with a number is also a step function. As such, the step functions form an
algebra Algebra () is one of the areas of mathematics, broad areas of mathematics. Roughly speaking, algebra is the study of mathematical symbols and the rules for manipulating these symbols in formulas; it is a unifying thread of almost all of mathem ...
over the real numbers. * A step function takes only a finite number of values. If the intervals A_i, for i=0, 1, \dots, n in the above definition of the step function are disjoint and their union is the real line, then f(x)=\alpha_i for all x\in A_i. * The
definite integral In mathematics, an integral assigns numbers to functions in a way that describes displacement, area, volume, and other concepts that arise by combining infinitesimal data. The process of finding integrals is called integration. Along with ...
of a step function is a piecewise linear function. * The Lebesgue integral of a step function \textstyle f = \sum_^n \alpha_i \chi_ is \textstyle \int f\,dx = \sum_^n \alpha_i \ell(A_i), where \ell(A) is the length of the interval A, and it is assumed here that all intervals A_i have finite length. In fact, this equality (viewed as a definition) can be the first step in constructing the Lebesgue integral. * A discrete random variable is sometimes defined as a
random variable A random variable (also called random quantity, aleatory variable, or stochastic variable) is a mathematical formalization of a quantity or object which depends on random events. It is a mapping or a function from possible outcomes (e.g., the p ...
whose
cumulative distribution function In probability theory and statistics, the cumulative distribution function (CDF) of a real-valued random variable X, or just distribution function of X, evaluated at x, is the probability that X will take a value less than or equal to x. Ev ...
is piecewise constant. In this case, it is locally a step function (globally, it may have an infinite number of steps). Usually however, any random variable with only countably many possible values is called a discrete random variable, in this case their cumulative distribution function is not necessarily locally a step function, as infinitely many intervals can accumulate in a finite region.


See also

* Crenel function *
Piecewise defined function In mathematics, a piecewise-defined function (also called a piecewise function, a hybrid function, or definition by cases) is a function defined by multiple sub-functions, where each sub-function applies to a different interval in the domain. Pi ...
* Sigmoid function * Simple function * Step detection * Unit step function * Piecewise-constant valuation


References

{{DEFAULTSORT:Step Function Special functions