HOME





Asymptotically Flat Spacetime
An asymptotically flat spacetime is a Lorentzian manifold in which, roughly speaking, the curvature vanishes at large distances from some region, so that at large distances, the geometry becomes indistinguishable from that of Minkowski spacetime. While this notion makes sense for any Lorentzian manifold, it is most often applied to a spacetime standing as a solution to the field equations of some metric theory of gravitation, particularly general relativity. In this case, we can say that an asymptotically flat spacetime is one in which the gravitational field, as well as any matter or other fields which may be present, become negligible in magnitude at large distances from some region. In particular, in an asymptotically flat vacuum solution, the gravitational field (curvature) becomes negligible at large distances from the source of the field (typically some isolated massive object such as a star). Intuitive significance The condition of asymptotic flatness is analogous to si ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lorentzian Manifold
In mathematical physics, a pseudo-Riemannian manifold, also called a semi-Riemannian manifold, is a differentiable manifold with a metric tensor that is everywhere non-degenerate bilinear form, nondegenerate. This is a generalization of a Riemannian manifold in which the requirement of Positive-definite bilinear form, positive-definiteness is relaxed. Every tangent space of a pseudo-Riemannian manifold is a pseudo-Euclidean vector space. A special case used in general relativity is a four-dimensional Lorentzian manifold for modeling spacetime, where tangent vectors can be classified as Causal structure, timelike, null, and spacelike. Introduction Manifolds In differential geometry, a differentiable manifold is a space that is locally similar to a Euclidean space. In an ''n''-dimensional Euclidean space any point can be specified by ''n'' real numbers. These are called the coordinates of the point. An ''n''-dimensional differentiable manifold is a generalisation of '' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Multipole Expansion
A multipole expansion is a mathematical series representing a function that depends on angles—usually the two angles used in the spherical coordinate system (the polar and azimuthal angles) for three-dimensional Euclidean space, \R^3. Multipole expansions are useful because, similar to Taylor series, oftentimes only the first few terms are needed to provide a good approximation of the original function. The function being expanded may be real- or complex-valued and is defined either on \R^3, or less often on \R^n for some other Multipole expansions are used frequently in the study of electromagnetic and gravitational fields, where the fields at distant points are given in terms of sources in a small region. The multipole expansion with angles is often combined with an expansion in radius. Such a combination gives an expansion describing a function throughout three-dimensional space. The multipole expansion is expressed as a sum of terms with progressively finer angular f ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Fluid Solution
In general relativity, a fluid solution is an exact solutions in general relativity, exact solution of the Einstein field equation in which the gravitational field is produced entirely by the mass, momentum, and stress density of a fluid. In astrophysics, fluid solutions are often employed as stellar models, since a perfect gas can be thought of as a special case of a perfect fluid. In physical cosmology, cosmology, fluid solutions are often used as cosmological models. Mathematical definition The stress–energy tensor of a relativistic fluid can be written in the form :T^ = \mu \, u^a \, u^b + p \, h^ + \left( u^a \, q^b + q^a \, u^b \right) + \pi^ Here * the world lines of the fluid elements are the integral curves of the four-velocity, velocity vector u^a, * the projection tensor h_ = g_ + u_a \, u_b projects other tensors onto hyperplane elements orthogonal to u^a, * the matter density is given by the scalar function \mu, * the pressure is given by the scalar function p, * ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Event Horizon
In astrophysics, an event horizon is a boundary beyond which events cannot affect an outside observer. Wolfgang Rindler coined the term in the 1950s. In 1784, John Michell proposed that gravity can be strong enough in the vicinity of massive compact objects that even light cannot escape. At that time, the Newtonian theory of gravitation and the so-called corpuscular theory of light were dominant. In these theories, if the escape velocity of the gravitational influence of a massive object exceeds the speed of light, then light originating inside or from it can escape temporarily but will return. In 1958, David Finkelstein used general relativity to introduce a stricter definition of a local black hole event horizon as a boundary beyond which events of any kind cannot affect an outside observer, leading to information and firewall paradoxes, encouraging the re-examination of the concept of local event horizons and the notion of black holes. Several theories were subsequently d ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Differential Topology
In mathematics, differential topology is the field dealing with the topological properties and smooth properties of smooth manifolds. In this sense differential topology is distinct from the closely related field of differential geometry, which concerns the ''geometric'' properties of smooth manifolds, including notions of size, distance, and rigid shape. By comparison differential topology is concerned with coarser properties, such as the number of holes in a manifold, its homotopy type, or the structure of its diffeomorphism group. Because many of these coarser properties may be captured algebraically, differential topology has strong links to algebraic topology. The central goal of the field of differential topology is the classification of all smooth manifolds up to diffeomorphism. Since dimension is an invariant of smooth manifolds up to diffeomorphism type, this classification is often studied by classifying the ( connected) manifolds in each dimension separately: * In ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Boundary Value Problem
In the study of differential equations, a boundary-value problem is a differential equation subjected to constraints called boundary conditions. A solution to a boundary value problem is a solution to the differential equation which also satisfies the boundary conditions. Boundary value problems arise in several branches of physics as any physical differential equation will have them. Problems involving the wave equation, such as the determination of normal modes, are often stated as boundary value problems. A large class of important boundary value problems are the Sturm–Liouville problems. The analysis of these problems, in the linear case, involves the eigenfunctions of a differential operator. To be useful in applications, a boundary value problem should be well posed. This means that given the input to the problem there exists a unique solution, which depends continuously on the input. Much theoretical work in the field of partial differential equations is devot ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Exact Solutions In General Relativity
In general relativity, an exact solution is a (typically closed form) solution of the Einstein field equations whose derivation does not invoke simplifying approximations of the equations, though the starting point for that derivation may be an idealized case like a perfectly spherical shape of matter. Mathematically, finding an exact solution means finding a Lorentzian manifold equipped with tensor fields modeling states of ordinary matter, such as a fluid, or classical non-gravitational fields such as the electromagnetic field. Background and definition These tensor fields should obey any relevant physical laws (for example, any electromagnetic field must satisfy Maxwell's equations). Following a standard recipe which is widely used in mathematical physics, these tensor fields should also give rise to specific contributions to the stress–energy tensor T^. (A field is described by a Lagrangian, varying with respect to the field should give the field equations and varyin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Robert Geroch
Robert Geroch (born 1 June 1942 in Akron, Ohio) is an American theoretical physicist and professor at the University of Chicago. He has worked prominently on general relativity and mathematical physics and has promoted the use of category theory in mathematics and physics. He was the Ph.D. supervisor for Abhay Ashtekar, Basilis Xanthopoulos and Gary Horowitz. He also proved an important theorem in spin geometry. Education Geroch obtained his Ph.D. degree from Princeton University in 1967 under the supervision of John Archibald Wheeler, with a thesis on ''Singularities in the spacetime of general relativity: their definition, existence, and local characterization''. Writings Chapters * *Horowitz, G.T and Geroch, R.P. (1979) "Global structure of spacetimes", p. 212–293. In Hawking S.W. and Israel, W (eds): General Relativity: An Einstein Centenary Survey. Cambridge University Press 1979 () Articles * * * * * *Geroch, R.P. (1971) "Space-time structure from a glo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algebraic Geometry
Algebraic geometry is a branch of mathematics which uses abstract algebraic techniques, mainly from commutative algebra, to solve geometry, geometrical problems. Classically, it studies zero of a function, zeros of multivariate polynomials; the modern approach generalizes this in a few different aspects. The fundamental objects of study in algebraic geometry are algebraic variety, algebraic varieties, which are geometric manifestations of solution set, solutions of systems of polynomial equations. Examples of the most studied classes of algebraic varieties are line (geometry), lines, circles, parabolas, ellipses, hyperbolas, cubic curves like elliptic curves, and quartic curves like lemniscate of Bernoulli, lemniscates and Cassini ovals. These are plane algebraic curves. A point of the plane lies on an algebraic curve if its coordinates satisfy a given polynomial equation. Basic questions involve the study of points of special interest like singular point of a curve, singular p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Roger Penrose
Sir Roger Penrose (born 8 August 1931) is an English mathematician, mathematical physicist, Philosophy of science, philosopher of science and Nobel Prize in Physics, Nobel Laureate in Physics. He is Emeritus Rouse Ball Professor of Mathematics in the University of Oxford, an emeritus fellow of Wadham College, Oxford, and an honorary fellow of St John's College, Cambridge, and University College London. Penrose has contributed to the mathematical physics of general relativity and physical cosmology, cosmology. He has received several prizes and awards, including the 1988 Wolf Prize in Physics, which he shared with Stephen Hawking for the Penrose–Hawking singularity theorems, and the 2020 Nobel Prize in Physics "for the discovery that black hole formation is a robust prediction of the general theory of relativity". He won the Royal Society Prizes for Science Books, Royal Society Science Books Prize for ''The Emperor's New Mind'' (1989), which outlines his views on physics and con ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]