HOME





Absorption (logic)
Absorption is a valid argument form and rule of inference of propositional logic. The rule states that if P implies Q, then P implies P and Q. The rule makes it possible to introduce conjunctions to proofs. It is called the law of absorption because the term Q is "absorbed" by the term P in the consequent.Whitehead and Russell, ''Principia Mathematica'', p. 14. The rule can be stated: :\frac where the rule is that wherever an instance of "P \to Q" appears on a line of a proof, "P \to (P \land Q)" can be placed on a subsequent line. Formal notation The ''absorption'' rule may be expressed as a sequent: : P \to Q \vdash P \to (P \land Q) where \vdash is a metalogical symbol meaning that P \to (P \land Q) is a syntactic consequence of (P \rightarrow Q) in some logical system; and expressed as a truth-functional tautology or theorem of propositional logic. The principle was stated as a theorem of propositional logic by Russell and Whitehead in ''Principia Mathematica'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Rule Of Inference
Rules of inference are ways of deriving conclusions from premises. They are integral parts of formal logic, serving as norms of the Logical form, logical structure of Validity (logic), valid arguments. If an argument with true premises follows a rule of inference then the conclusion cannot be false. ''Modus ponens'', an influential rule of inference, connects two premises of the form "if P then Q" and "P" to the conclusion "Q", as in the argument "If it rains, then the ground is wet. It rains. Therefore, the ground is wet." There are many other rules of inference for different patterns of valid arguments, such as ''modus tollens'', disjunctive syllogism, constructive dilemma, and existential generalization. Rules of inference include rules of implication, which operate only in one direction from premises to conclusions, and rules of replacement, which state that two expressions are equivalent and can be freely swapped. Rules of inference contrast with formal fallaciesinvalid argu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Formal System
A formal system is an abstract structure and formalization of an axiomatic system used for deducing, using rules of inference, theorems from axioms. In 1921, David Hilbert proposed to use formal systems as the foundation of knowledge in mathematics. The term ''formalism'' is sometimes a rough synonym for ''formal system'', but it also refers to a given style of notation, for example, Paul Dirac's bra–ket notation. Concepts A formal system has the following: * Formal language, which is a set of well-formed formulas, which are strings of symbols from an alphabet, formed by a formal grammar (consisting of production rules or formation rules). * Deductive system, deductive apparatus, or proof system, which has rules of inference that take axioms and infers theorems, both of which are part of the formal language. A formal system is said to be recursive (i.e. effective) or recursively enumerable if the set of axioms and the set of inference rules are decidable ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Absorption Law
In algebra, the absorption law or absorption identity is an identity linking a pair of binary operations. Two binary operations, ¤ and ⁂, are said to be connected by the absorption law if: :''a'' ¤ (''a'' ⁂ ''b'') = ''a'' ⁂ (''a'' ¤ ''b'') = ''a''. Examples Lattices A set equipped with two commutative and associative binary operations \scriptstyle \lor ("join") and \scriptstyle \land ("meet") that are connected by the absorption law is called a lattice; in this case, both operations are necessarily idempotent (i.e. ''a'' \scriptstyle \lor ''a'' = ''a'' and ''a'' \scriptstyle \land ''a'' = ''a''). Examples of lattices include Heyting algebras and Boolean algebras,See Boolean algebra (structure)#Axiomatics for a proof of the absorption laws from the distributivity, identity, and boundary laws. in particular sets of sets with '' union'' (∪) and ''intersection'' (∩) operators, and ordered sets with ''min'' and ''max'' operations. Logic In classical logi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Distribution (logic)
In mathematics, the distributive property of binary operations is a generalization of the distributive law, which asserts that the equality x \cdot (y + z) = x \cdot y + x \cdot z is always true in elementary algebra. For example, in elementary arithmetic, one has 2 \cdot (1 + 3) = (2 \cdot 1) + (2 \cdot 3). Therefore, one would say that multiplication ''distributes'' over addition. This basic property of numbers is part of the definition of most algebraic structures that have two operations called addition and multiplication, such as complex numbers, polynomials, matrices, rings, and fields. It is also encountered in Boolean algebra and mathematical logic, where each of the logical and (denoted \,\land\,) and the logical or (denoted \,\lor\,) distributes over the other. Definition Given a set S and two binary operators \,*\, and \,+\, on S, *the operation \,*\, is over (or with respect to) \,+\, if, given any elements x, y, \text z of S, x * (y + z) = (x * y) + (x * z); *t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Conjunction Introduction
Conjunction introduction (often abbreviated simply as conjunction and also called and introduction or adjunction) is a valid rule of inference of propositional logic. The rule makes it possible to introduce a conjunction into a logical proof. It is the inference that if the proposition P is true, and the proposition Q is true, then the logical conjunction of the two propositions P and Q is true. For example, if it is true that "it is raining", and it is true that "the cat is inside", then it is true that "it is raining and the cat is inside". The rule can be stated: :\frac where the rule is that wherever an instance of "P" and "Q" appear on lines of a proof, a "P \land Q" can be placed on a subsequent line. Formal notation The ''conjunction introduction'' rule may be written in sequent notation: : P, Q \vdash P \land Q where P and Q are propositions expressed in some formal system, and \vdash is a metalogical symbol A symbol is a mark, Sign (semiotics), sign, or w ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Law Of Excluded Middle
In logic, the law of excluded middle or the principle of excluded middle states that for every proposition, either this proposition or its negation is true. It is one of the three laws of thought, along with the law of noncontradiction and the law of identity; however, no system of logic is built on just these laws, and none of these laws provides inference rules, such as modus ponens or De Morgan's laws. The law is also known as the law/principle of the excluded third, in Latin ''principium tertii exclusi''. Another Latin designation for this law is ''tertium non datur'' or "no third ossibilityis given". In classical logic, the law is a tautology. In contemporary logic the principle is distinguished from the semantical principle of bivalence, which states that every proposition is either true or false. The principle of bivalence always implies the law of excluded middle, while the converse is not always true. A commonly cited counterexample uses statements unprovable n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Material Implication (rule Of Inference)
A material is a substance or mixture of substances that constitutes an object. Materials can be pure or impure, living or non-living matter. Materials can be classified on the basis of their physical and chemical properties, or on their geological origin or biological function. Materials science is the study of materials, their properties and their applications. Raw materials can be processed in different ways to influence their properties, by purification, shaping or the introduction of other materials. New materials can be produced from raw materials by synthesis. In industry, materials are inputs to manufacturing processes to produce products or more complex materials, and the nature and quantity of materials used may form part of the calculation for the cost of a product or delivery under contract, such as where contract costs are calculated on a " time and materials" basis. Historical elements Materials chart the history of humanity. The system of the three prehist ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Alfred North Whitehead
Alfred North Whitehead (15 February 1861 – 30 December 1947) was an English mathematician and philosopher. He created the philosophical school known as process philosophy, which has been applied in a wide variety of disciplines, including ecology, theology, education, physics, biology, economics, and psychology. In his early career Whitehead wrote primarily on mathematics, logic, and physics. He wrote the three-volume ''Principia Mathematica'' (1910–1913), with his former student Bertrand Russell. ''Principia Mathematica'' is considered one of the twentieth century's most important works in mathematical logic, and placed 23rd in a list of the top 100 English-language nonfiction books of the twentieth century by Modern Library."The Modern Library ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Bertrand Russell
Bertrand Arthur William Russell, 3rd Earl Russell, (18 May 1872 – 2 February 1970) was a British philosopher, logician, mathematician, and public intellectual. He had influence on mathematics, logic, set theory, and various areas of analytic philosophy.Stanford Encyclopedia of Philosophy"Bertrand Russell", 1 May 2003. He was one of the early 20th century's prominent logicians and a founder of analytic philosophy, along with his predecessor Gottlob Frege, his friend and colleague G. E. Moore, and his student and protégé Ludwig Wittgenstein. Russell with Moore led the British "revolt against British idealism, idealism". Together with his former teacher Alfred North Whitehead, A. N. Whitehead, Russell wrote ''Principia Mathematica'', a milestone in the development of classical logic and a major attempt to reduce the whole of mathematics to logic (see logicism). Russell's article "On Denoting" has been considered a "paradigm of philosophy". Russell was a Pacifism, pacifist who ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Propositional Calculus
The propositional calculus is a branch of logic. It is also called propositional logic, statement logic, sentential calculus, sentential logic, or sometimes zeroth-order logic. Sometimes, it is called ''first-order'' propositional logic to contrast it with System F, but it should not be confused with first-order logic. It deals with propositions (which can be Truth value, true or false) and relations between propositions, including the construction of arguments based on them. Compound propositions are formed by connecting propositions by logical connectives representing the truth functions of Logical conjunction, conjunction, Logical disjunction, disjunction, Material conditional, implication, Logical biconditional, biconditional, and negation. Some sources include other connectives, as in the table below. Unlike first-order logic, propositional logic does not deal with non-logical objects, predicates about them, or Quantifier (logic), quantifiers. However, all the machinery of pr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Theorem
In mathematics and formal logic, a theorem is a statement (logic), statement that has been Mathematical proof, proven, or can be proven. The ''proof'' of a theorem is a logical argument that uses the inference rules of a deductive system to establish that the theorem is a logical consequence of the axioms and previously proved theorems. In mainstream mathematics, the axioms and the inference rules are commonly left implicit, and, in this case, they are almost always those of Zermelo–Fraenkel set theory with the axiom of choice (ZFC), or of a less powerful theory, such as Peano arithmetic. Generally, an assertion that is explicitly called a theorem is a proved result that is not an immediate consequence of other known theorems. Moreover, many authors qualify as ''theorems'' only the most important results, and use the terms ''lemma'', ''proposition'' and ''corollary'' for less important theorems. In mathematical logic, the concepts of theorems and proofs have been formal system ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Tautology (logic)
In mathematical logic, a tautology (from ) is a formula that is true regardless of the interpretation of its component terms, with only the logical constants having a fixed meaning. For example, a formula that states, "the ball is green or the ball is not green," is always true, regardless of what a ball is and regardless of its colour. Tautology is usually, though not always, used to refer to valid formulas of propositional logic. The philosopher Ludwig Wittgenstein first applied the term to redundancies of propositional logic in 1921, borrowing from rhetoric, where a tautology is a repetitive statement. In logic, a formula is satisfiable if it is true under at least one interpretation, and thus a tautology is a formula whose negation is unsatisfiable. In other words, it cannot be false. Unsatisfiable statements, both through negation and affirmation, are known formally as contradictions. A formula that is neither a tautology nor a contradiction is said to be logically c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]