2017 BQ6
   HOME



picture info

2017 BQ6
is a sub-kilometer asteroid on an eccentric orbit, classified as a near-Earth object and potentially hazardous asteroid of the Apollo asteroid, Apollo group, approximately 150 meters in diameter. It was discovered on 26 January 2017, by the Space Surveillance Telescope at Lincoln Laboratory's ETS (Atom Site) and passed within 6.6 lunar distances of Earth on 7 February 2017 at 6:36 UT. Radar imaging Its closest approach was observed by NASA's Goldstone Solar System Radar in California's Mojave Desert, determining it to have a number of angular flat surfaces similar to a polyhedral die. Orbit orbits the Sun with a semi-major axis of 1.95 Astronomical unit, AU at a distance of 0.9–3.0 AU once every 2 years and 9 months (992 days). Its orbit has an orbital eccentricity, eccentricity of 0.53 and an orbital inclination, inclination of 9Degree (angle), ° with respect to the ecliptic. It has an Earth minimum orbital intersection distance of , which corresponds t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Space Surveillance Telescope
The Space Surveillance Telescope (SST) is a military telescope for detecting, tracking and cataloguing satellites, near-Earth objects and space debris. SST achieved first light in 2011 at the White Sands Missile Range, New Mexico, United States. In 2017, SST was dismantled and moved to the Harold E. Holt Naval Communication Station, Exmouth, Western Australia. From there it will observe the Southern Celestial Hemisphere and collect data for the US Space Surveillance Network. SST achieved first light in Australia on March 5, 2020. SST entered initial operational capability on October 4th, 2022 and is operated by the Royal Australian Air Force, 1 Remote Sensor Unit under the command and control (C2) of the U.S. Space Force. Purpose SST enables the military to better track and identify objects and threats in space including space debris, as well as predict and avoid potential collisions. Whether it is space traffic management or the protection of critical space-based capabi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Minor Planet Object Articles (unnumbered)
Minor may refer to: * Minor (law), a person under the age of certain legal activities. ** A person who has not reached the age of majority * Academic minor, a secondary field of study in undergraduate education Music theory *Minor chord ** Barbershop seventh chord or minor seventh chord * Minor interval *Minor key *Minor scale Mathematics * Minor (graph theory), the relation of one graph to another given certain conditions * Minor (linear algebra), the determinant of a certain submatrix People * Charles Minor (1835–1903), American college administrator * Charles A. Minor (21st-century), Liberian diplomat * Dan Minor (1909–1982), American jazz trombonist * Dave Minor (1922–1998), American basketball player * James T. Minor, US academic administrator and sociologist * Jerry Minor (born 1969), American actor, comedian and writer * Kyle Minor (born 1976), American writer * Mike Minor (actor) (born 1940), American actor * Mike Minor (baseball) (born 1987), American base ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Apollo Asteroids
The Apollo asteroids are a group of near-Earth asteroids named after 1862 Apollo, discovered by German astronomer Karl Reinmuth in the 1930s. They are Earth-crossing asteroids that have an orbital semi-major axis greater than that of the Earth (a > 1 AU) but perihelion distances less than the Earth's aphelion distance (q < 1.017 AU). , the number of known Apollo asteroids is 10,485, making the class the largest group of s (''cf''. the , and
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

LCDB Quality Code
In astronomy, a light curve is a graph of light intensity of a celestial object or region as a function of time, typically with the magnitude of light received on the y axis and with time on the x axis. The light is usually in a particular frequency interval or band. Light curves can be periodic, as in the case of eclipsing binaries, Cepheid variables, other periodic variables, and transiting extrasolar planets, or aperiodic, like the light curve of a nova, a cataclysmic variable star, a supernova or a microlensing event or binary as observed during occultation events. The study of the light curve, together with other observations, can yield considerable information about the physical process that produces it or constrain the physical theories about it. Variable stars Graphs of the apparent magnitude of a variable star over time are commonly used to visualise and analyse their behaviour. Although the categorisation of variable star types is increasingly done from t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Rotation Period
The rotation period of a celestial object (e.g., star, gas giant, planet, moon, asteroid) may refer to its sidereal rotation period, i.e. the time that the object takes to complete a single revolution around its axis of rotation relative to the background stars, measured in sidereal time. The other type of commonly used rotation period is the object's synodic rotation period (or ''solar day''), measured in solar time, which may differ by a fraction of a rotation or more than one rotation to accommodate the portion of the object's orbital period during one day. Measuring rotation For solid objects, such as rocky planets and asteroids, the rotation period is a single value. For gaseous or fluid bodies, such as stars and gas giants, the period of rotation varies from the object's equator to its Poles of astronomical bodies, pole due to a phenomenon called differential rotation. Typically, the stated rotation period for a gas giant (such as Jupiter, Saturn, Uranus, Neptune) is its in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Astronomical Albedo
Albedo (; ) is the measure of the diffuse reflection of sunlight, solar radiation out of the total solar radiation and measured on a scale from 0, corresponding to a black body that absorbs all incident radiation, to 1, corresponding to a body that reflects all incident radiation. Surface albedo is defined as the ratio of Radiosity (radiometry), radiosity ''J''e to the irradiance ''E''e (flux per unit area) received by a surface. The proportion reflected is not only determined by properties of the surface itself, but also by the spectral and angular distribution of solar radiation reaching the Earth's surface. These factors vary with atmospheric composition, geographic location, and time (see position of the Sun). While bi-hemispherical reflectance is calculated for a single angle of incidence (i.e., for a given position of the Sun), albedo is the directional integration of reflectance over all solar angles in a given period. The temporal resolution may range from seconds (as ob ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Absolute Magnitude
Absolute magnitude () is a measure of the luminosity of a celestial object on an inverse logarithmic astronomical magnitude scale. An object's absolute magnitude is defined to be equal to the apparent magnitude that the object would have if it were viewed from a distance of exactly , without extinction (or dimming) of its light due to absorption by interstellar matter and cosmic dust. By hypothetically placing all objects at a standard reference distance from the observer, their luminosities can be directly compared among each other on a magnitude scale. As with all astronomical magnitudes, the absolute magnitude can be specified for different wavelength ranges corresponding to specified filter bands or passbands; for stars a commonly quoted absolute magnitude is the absolute visual magnitude, which uses the visual (V) band of the spectrum (in the UBV photometric system). Absolute magnitudes are denoted by a capital M, with a subscript representing the filter band used for mea ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Minimum Orbital Intersection Distance
Minimum orbit intersection distance (MOID) is a measure used in astronomy to assess potential close approaches and collision risks between astronomical objects. It is defined as the distance between the closest points of the osculating orbits of two bodies. Of greatest interest is the risk of a collision with Earth. Earth MOID is often listed on comet and asteroid databases such as the JPL Small-Body Database. MOID values are also defined with respect to other bodies as well: Jupiter MOID, Venus MOID and so on. An object is classified as a potentially hazardous object (PHO) – that is, posing a possible risk to Earth – if, among other conditions, its Earth MOID is less than 0.05 AU. For more massive bodies than Earth, there is a potentially notable close approach with a larger MOID; for instance, Jupiter MOIDs less than 1 AU are considered noteworthy since Jupiter is the most massive planet.Bruce Koehn,Minimum Orbital Intersection Distance, Lowell Observatory, retrieved o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ecliptic
The ecliptic or ecliptic plane is the orbital plane of the Earth around the Sun. From the perspective of an observer on Earth, the Sun's movement around the celestial sphere over the course of a year traces out a path along the ecliptic against the background of stars. The ecliptic is an important reference plane and is the basis of the ecliptic coordinate system. Sun's apparent motion The ecliptic is the apparent path of the Sun throughout the course of a year. Because Earth takes one year to orbit the Sun, the apparent position of the Sun takes one year to make a complete circuit of the ecliptic. With slightly more than 365 days in one year, the Sun moves a little less than 1° eastward every day. This small difference in the Sun's position against the stars causes any particular spot on Earth's surface to catch up with (and stand directly north or south of) the Sun about four minutes later each day than it would if Earth did not orbit; a day on Earth is therefore 24 ho ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]