HOME





166 (number)
166 (one hundred ndsixty-six) is the natural number following 165 and preceding 167. In mathematics 166 is an even number and a composite number. It is a centered triangular number. Given 166, the Mertens function returns 0. 166 is a Smith number in base 10. 166 in Roman numerals Roman numerals are a numeral system that originated in ancient Rome and remained the usual way of writing numbers throughout Europe well into the Late Middle Ages. Numbers are written with combinations of letters from the Latin alphabet, eac ... consists of the first 5 symbols, CLXVI. External links Number Facts and Trivia: 166The Number 166 166th Street (3rd Avenue El) References {{DEFAULTSORT:166 (Number) Integers ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Natural Number
In mathematics, the natural numbers are the numbers 0, 1, 2, 3, and so on, possibly excluding 0. Some start counting with 0, defining the natural numbers as the non-negative integers , while others start with 1, defining them as the positive integers Some authors acknowledge both definitions whenever convenient. Sometimes, the whole numbers are the natural numbers as well as zero. In other cases, the ''whole numbers'' refer to all of the integers, including negative integers. The counting numbers are another term for the natural numbers, particularly in primary education, and are ambiguous as well although typically start at 1. The natural numbers are used for counting things, like "there are ''six'' coins on the table", in which case they are called ''cardinal numbers''. They are also used to put things in order, like "this is the ''third'' largest city in the country", which are called ''ordinal numbers''. Natural numbers are also used as labels, like Number (sports), jersey ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


165 (number)
165 (one hundred ndsixty-five) is the natural number following 164 and preceding 166. In mathematics 165 is: *an odd number, a composite number, and a deficient number. *a sphenic number. *a tetrahedral number. *the number of prime knots with 10 crossings. *the sum of the sums of the divisors of the first 14 positive integers. *a self number in base 10. *a palindromic number A palindromic number (also known as a numeral palindrome or a numeric palindrome) is a number (such as 16361) that remains the same when its digits are reversed. In other words, it has reflectional symmetry across a vertical axis. The term ''palin ... in binary (101001012) and bases 14 (BB14), 32 (5532) and 54 (3354). *a unique period in base 2. References External links Number Facts and Trivia: 165The Number 165The Positive Integer 165 Integers {{Num-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


167 (number)
167 (one hundred ndsixty-seven) is the natural number following 166 and preceding 168. In mathematics 167 is the 39th prime number, an emirp, an isolated prime, a Chen prime, a Gaussian prime, a safe prime, and an Eisenstein prime with no imaginary part and a real part of the form 3n - 1. 167 is the smallest number which requires six terms when expressed using the greedy algorithm as a sum of squares, 167 = 144 + 16 + 4 + 1 + 1 + 1, although by Lagrange's four-square theorem its non-greedy expression as a sum of squares can be shorter, e.g. 167 = 121 + 36 + 9 + 1. 167 is a full reptend prime in base 10, since the decimal expansion of 1/167 repeats the following 166 digits: 0.00598802395209580838323353293413173652694610778443113772455089820359281437125748502994 0119760479041916167664670658682634730538922155688622754491017964071856287425149700... 167 is a highly cototient number, as it is the smallest number ''k'' with exactly 15 solutions to the equation ''x'' - φ(''x'') ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Composite Number
A composite number is a positive integer that can be formed by multiplying two smaller positive integers. Accordingly it is a positive integer that has at least one divisor other than 1 and itself. Every positive integer is composite, prime number, prime, or the Unit (ring theory), unit 1, so the composite numbers are exactly the numbers that are not prime and not a unit. E.g., the integer 14 is a composite number because it is the product of the two smaller integers 2 × 7 but the integers 2 and 3 are not because each can only be divided by one and itself. The composite numbers up to 150 are: :4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30, 32, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 63, 64, 65, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 96, 98, 99, 100, 102, 104, 105, 106, 108, 110, 111, 112, 114, 115, 116, 117, 118, 119, 120, 121, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Centered Triangular Number
A centered (or centred) triangular number is a centered figurate number that represents an equilateral triangle with a dot in the center and all its other dots surrounding the center in successive equilateral triangular layers. This is also the number of points of a hexagonal lattice with nearest-neighbor coupling whose distance from a given point is less than or equal to n. The following image shows the building of the centered triangular numbers by using the associated figures: at each step, the previous triangle (shown in red) is surrounded by a triangular layer of new dots (in blue). Properties *The gnomon of the ''n''-th centered triangular number, corresponding to the (''n'' + 1)-th triangular layer, is: ::C_ - C_ = 3(n+1). *The ''n''-th centered triangular number, corresponding to ''n'' layers ''plus'' the center, is given by the formula: ::C_ = 1 + 3 \frac = \frac. *Each centered triangular number has a remainder of 1 when divided by 3, and the quotient (if posi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mertens Function
In number theory, the Mertens function is defined for all positive integers ''n'' as : M(n) = \sum_^n \mu(k), where \mu(k) is the Möbius function. The function is named in honour of Franz Mertens. This definition can be extended to positive real numbers as follows: : M(x) = M(\lfloor x \rfloor). Less formally, M(x) is the count of square-free integers up to ''x'' that have an even number of prime factors, minus the count of those that have an odd number. The first 143 ''M''(''n'') values are The Mertens function slowly grows in positive and negative directions both on average and in peak value, oscillating in an apparently chaotic manner passing through zero when ''n'' has the values :2, 39, 40, 58, 65, 93, 101, 145, 149, 150, 159, 160, 163, 164, 166, 214, 231, 232, 235, 236, 238, 254, 329, 331, 332, 333, 353, 355, 356, 358, 362, 363, 364, 366, 393, 401, 403, 404, 405, 407, 408, 413, 414, 419, 420, 422, 423, 424, 425, 427, 428, ... . Because the Möbius function only ta ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Smith Number
In number theory, a Smith number is a composite number for which, in a given number base, the sum of its digits is equal to the sum of the digits in its prime factorization in the same base. In the case of numbers that are not square-free, the factorization is written without exponents, writing the repeated factor as many times as needed. Smith numbers were named by Albert Wilansky of Lehigh University, as he noticed the property in the phone number (493-7775) of his brother-in-law Harold Smith: : 4937775 = 3 · 5 · 5 · 65837 while : 4 + 9 + 3 + 7 + 7 + 7 + 5 = 3 + 5 + 5 + (6 + 5 + 8 + 3 + 7) in base 10.Sándor & Crstici (2004) p.383 Mathematical definition Let n be a natural number. For base b > 1, let the function F_b(n) be the digit sum of n in base b. A natural number n with prime factorization n = \prod_ p^ is a Smith number if F_b(n) = \sum_ v_p(n) F_ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Base 10
The decimal numeral system (also called the base-ten positional numeral system and denary or decanary) is the standard system for denoting integer and non-integer numbers. It is the extension to non-integer numbers (''decimal fractions'') of the Hindu–Arabic numeral system. The way of denoting numbers in the decimal system is often referred to as ''decimal notation''. A decimal numeral (also often just ''decimal'' or, less correctly, ''decimal number''), refers generally to the notation of a number in the decimal numeral system. Decimals may sometimes be identified by a decimal separator (usually "." or "," as in or ). ''Decimal'' may also refer specifically to the digits after the decimal separator, such as in " is the approximation of to ''two decimals''". Zero-digits after a decimal separator serve the purpose of signifying the precision of a value. The numbers that may be represented in the decimal system are the decimal fractions. That is, fractions of the form , ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Roman Numerals
Roman numerals are a numeral system that originated in ancient Rome and remained the usual way of writing numbers throughout Europe well into the Late Middle Ages. Numbers are written with combinations of letters from the Latin alphabet, each with a fixed integer value. The modern style uses only these seven: The use of Roman numerals continued long after the Fall of the Western Roman Empire, decline of the Roman Empire. From the 14th century on, Roman numerals began to be replaced by Arabic numerals; however, this process was gradual, and the use of Roman numerals persisted in various places, including on clock face, clock faces. For instance, on the clock of Big Ben (designed in 1852), the hours from 1 to 12 are written as: The notations and can be read as "one less than five" (4) and "one less than ten" (9), although there is a tradition favouring the representation of "4" as "" on Roman numeral clocks. Other common uses include year numbers on monuments and buildin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]