∞-groupoid
   HOME





∞-groupoid
In category theory, a branch of mathematics, an ∞-groupoid is an abstract homotopical model for topological spaces. One model uses Kan complexes which are fibrant objects in the category (mathematics), category of simplicial sets (with the standard model category, model structure). It is an ∞-category generalization of a groupoid, a category in which every morphism is an isomorphism. The homotopy hypothesis states that ∞-groupoids are equivalent to spaces up to homotopy. Globular Groupoids Alexander Grothendieck suggested in ''Pursuing Stacks'' that there should be an extraordinarily simple model of ∞-groupoids using globular sets, originally called hemispherical complexes. These sets are constructed as Sheaf (mathematics)#Presheaves, presheaves on the globular category \mathbb. This is defined as the category whose objects are finite ordinals [n] and morphisms are given by \begin \sigma_n: [n] \to [n+1]\\ \tau_n: [n] \to [n+1] \end such that the globular relations hold \ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Homotopy Hypothesis
In category theory, a branch of mathematics, Grothendieck's homotopy hypothesis states, homotopy theory speaking, that the ∞-groupoids are space (mathematics), spaces. One version of the hypothesis was claimed to be proved in the 1991 paper by Mikhail Kapranov, Kapranov and Vladimir Voevodsky, Voevodsky. Their proof turned out to be flawed and their result in the form interpreted by Carlos Simpson is now known as the Simpson conjecture. In higher category theory, one considers a space-valued presheaf instead of a presheaf (category theory), set-valued presheaf in ordinary category theory. In view of homotopy hypothesis, a space here can be taken to an ∞-groupoid. Formulations A precise formulation of the hypothesis very strongly depends on the definition of an ∞-groupoid. One definition is that, mimicking the ordinary category case, an ∞-groupoid is an ∞-category in which each morphism is invertible or equivalently its homotopy category of an ∞-category, homotopy cat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Pursuing Stacks
''Pursuing Stacks'' () is an influential 1983 mathematical manuscript by Alexander Grothendieck. It consists of a 12-page letter to Daniel Quillen followed by about 600 pages of research notes. The topic of the work is a generalized homotopy theory using higher category theory. The word "stacks" in the title refers to what are nowadays usually called " ∞-groupoids", one possible definition of which Grothendieck sketches in his manuscript. (The stacks of algebraic geometry, which also go back to Grothendieck, are not the focus of this manuscript.) Among the concepts introduced in the work are derivators and test categories. Some parts of the manuscript were later developed in: * * Overview of manuscript I. The letter to Daniel Quillen Pursuing stacks started out as a letter from Grothendieck to Daniel Quillen. In this letter he discusses Quillen's progress on the foundations for homotopy theory and remarked on the lack of progress since then. He remarks how some of his ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


∞-category
In mathematics, more specifically category theory, a quasi-category (also called quasicategory, weak Kan complex, inner Kan complex, infinity category, ∞-category, Boardman complex, quategory) is a generalization of the notion of a Category (mathematics), category. The study of such generalizations is known as higher category theory. Overview Quasi-categories were introduced by . André Joyal has much advanced the study of quasi-categories showing that most of the usual basic category theory and some of the advanced notions and theorems have their analogues for quasi-categories. An elaborate treatise of the theory of quasi-categories has been expounded by . Quasi-categories are certain simplicial sets. Like ordinary categories, they contain objects (the 0-simplices of the simplicial set) and morphisms between these objects (1-simplices). But unlike categories, the composition of two morphisms need not be uniquely defined. All the morphisms that can serve as composition of tw ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Kan Complex
In mathematics, Kan complexes and Kan fibrations are part of the theory of simplicial sets. Kan fibrations are the fibrations of the standard model category structure on simplicial sets and are therefore of fundamental importance. Kan complexes are the fibrant objects in this model category. The name is in honor of Daniel Kan. For various kinds of fibrations for simplicial sets, see Fibration of simplicial sets. Definitions Definition of the standard n-simplex For each ''n'' β‰₯ 0, recall that the standard n-simplex, \Delta^n, is the representable simplicial set :\Delta^n(i) = \mathrm_ ( Applying the geometric realization functor to this simplicial set gives a space homeomorphic to the topological standard n-simplex: the convex subspace of \mathbb^ consisting of all points (t_0,\dots,t_n) such that the coordinates are non-negative and sum to 1. Definition of a horn For each ''k'' β‰€ ''n'', this has a subcomplex \Lambda^n_k, the ''k''-th horn ins ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Groupoid
In mathematics, especially in category theory and homotopy theory, a groupoid (less often Brandt groupoid or virtual group) generalises the notion of group in several equivalent ways. A groupoid can be seen as a: * '' Group'' with a partial function replacing the binary operation; * '' Category'' in which every morphism is invertible. A category of this sort can be viewed as augmented with a unary operation on the morphisms, called ''inverse'' by analogy with group theory. A groupoid where there is only one object is a usual group. In the presence of dependent typing, a category in general can be viewed as a typed monoid, and similarly, a groupoid can be viewed as simply a typed group. The morphisms take one from one object to another, and form a dependent family of types, thus morphisms might be typed , , say. Composition is then a total function: , so that . Special cases include: * '' Setoids'': sets that come with an equivalence relation, * '' G-sets'': sets equippe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Globular Set
In category theory, a branch of mathematics, a globular set is a higher-dimensional generalization of a directed graph. Precisely, it is a sequence of sets X_0, X_1, X_2, \dots equipped with pairs of functions s_n, t_n: X_n \to X_ such that * s_n \circ s_ = s_n \circ t_, * t_n \circ s_ = t_n \circ t_. (Equivalently, it is a presheaf on the category of β€œglobes”.) The letters "''s''", "''t''" stand for "source" and "target" and one imagines X_n consists of directed edges at level ''n''. In the context of a graph, each dimension is represented as a set of k-cells. Vertices would make up the 0-cells, edges connecting vertices would be 1-cells, and then each dimension higher connects groups of the dimension beneath it. It can be viewed as a specific instance of the polygraph. In a polygraph, a source or target of a k-cell may consist of an entire path of elements of (k-1)-cells, but a globular set restricts this to singular elements of (k-1)-cells. A variant of the notion wa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Fundamental Groupoid
In algebraic topology, the fundamental groupoid is a certain topological invariant of a topological space. It can be viewed as an extension of the more widely-known fundamental group; as such, it captures information about the homotopy type of a topological space. In terms of category theory, the fundamental groupoid is a certain functor from the category of topological spaces to the category of groupoids. Definition Let be a topological space. Consider the equivalence relation on continuous paths in in which two continuous paths are equivalent if they are homotopic with fixed endpoints. The fundamental groupoid , or , assigns to each ordered pair of points in the collection of equivalence classes of continuous paths from to . More generally, the fundamental groupoid of on a set restricts the fundamental groupoid to the points which lie in both and . This allows for a generalisation of the Van Kampen theorem using two base points to compute the fundamental group of th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Whitehead Tower
In homotopy theory, a branch of algebraic topology, a Postnikov system (or Postnikov tower) is a way of decomposing a topological space by filtering its homotopy type. What this looks like is for a space X there is a list of spaces \_ where\pi_k(X_n) = \begin \pi_k(X) & \text k \leq n \\ 0 & \text k > n \endand there is a series of maps \phi_n: X_n \to X_ that are fibrations with fibers Eilenberg-MacLane spaces K(\pi_n(X),n). In short, we are decomposing the homotopy type of X using an inverse system of topological spaces whose homotopy type at degree k agrees with the truncated homotopy type of the original space X. Postnikov systems were introduced by, and are named after, Mikhail Postnikov. There is a similar construction called the Whitehead tower (defined below) where instead of having spaces X_n with the homotopy type of X for degrees \leq n, these spaces have null homotopy groups \pi_(X_n) =0 for 1 is classified by a homotopy class : _n\in _,K(\pi_n(X), n+1)\cong H^( ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Alexander Grothendieck
Alexander Grothendieck, later Alexandre Grothendieck in French (; ; ; 28 March 1928 β€“ 13 November 2014), was a German-born French mathematician who became the leading figure in the creation of modern algebraic geometry. His research extended the scope of the field and added elements of commutative algebra, homological algebra, sheaf theory, and category theory to its foundations, while his so-called Grothendieck's relative point of view, "relative" perspective led to revolutionary advances in many areas of pure mathematics. He is considered by many to be the greatest mathematician of the twentieth century. Grothendieck began his productive and public career as a mathematician in 1949. In 1958, he was appointed a research professor at the Institut des Hautes Γ‰tudes Scientifiques, Institut des hautes Γ©tudes scientifiques (IHΓ‰S) and remained there until 1970, when, driven by personal and political convictions, he left following a dispute over military funding. He receive ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Derived Category
In mathematics, the derived category ''D''(''A'') of an abelian category ''A'' is a construction of homological algebra introduced to refine and in a certain sense to simplify the theory of derived functors defined on ''A''. The construction proceeds on the basis that the objects of ''D''(''A'') should be chain complexes in ''A'', with two such chain complexes considered isomorphic when there is a chain map that induces an isomorphism on the level of homology of the chain complexes. Derived functors can then be defined for chain complexes, refining the concept of hypercohomology. The definitions lead to a significant simplification of formulas otherwise described (not completely faithfully) by complicated spectral sequences. The development of the derived category, by Alexander Grothendieck and his student Jean-Louis Verdier shortly after 1960, now appears as one terminal point in the explosive development of homological algebra in the 1950s, a decade in which it had ma ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Abelian Category
In mathematics, an abelian category is a category in which morphisms and objects can be added and in which kernels and cokernels exist and have desirable properties. The motivating prototypical example of an abelian category is the category of abelian groups, . Abelian categories are very ''stable'' categories; for example they are regular and they satisfy the snake lemma. The class of abelian categories is closed under several categorical constructions, for example, the category of chain complexes of an abelian category, or the category of functors from a small category to an abelian category are abelian as well. These stability properties make them inevitable in homological algebra and beyond; the theory has major applications in algebraic geometry, cohomology and pure category theory. Mac Lane says Alexander Grothendieck defined the abelian category, but there is a reference that says Eilenberg's disciple, Buchsbaum, proposed the concept in his PhD thesis, and Groth ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Module Category
In algebra, given a ring ''R'', the category of left modules over ''R'' is the category whose objects are all left modules over ''R'' and whose morphisms are all module homomorphisms between left ''R''-modules. For example, when ''R'' is the ring of integers Z, it is the same thing as the category of abelian groups. The category of right modules is defined in a similar way. One can also define the category of bimodules over a ring ''R'' but that category is equivalent to the category of left (or right) modules over the enveloping algebra of ''R'' (or over the opposite of that). Note: Some authors use the term module category for the category of modules. This term can be ambiguous since it could also refer to a category with a monoidal-category action. Properties The categories of left and right modules are abelian categories. These categories have enough projectives and enough injectives. Mitchell's embedding theorem states every abelian category arises as a full subcate ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]