γ-space
   HOME





γ-space
In mathematics, a \gamma-space is a topological space that satisfies a certain a basic selection principle. An infinite cover of a topological space is an \omega-cover if every finite subset of this space is contained in some member of the cover, and the whole space is not a member the cover. A cover of a topological space is a \gamma-cover if every point of this space belongs to all but finitely many members of this cover. A \gamma-space is a space in which every open \omega-cover contains a \gamma-cover. History Gerlits and Nagy introduced the notion of γ-spaces. They listed some topological properties and enumerated them by Greek letters. The above property was the third one on this list, and therefore it is called the γ-property. Characterizations Combinatorial characterization Let mathbb\infty be the set of all infinite subsets of the set of natural numbers. A set A\subset mathbb\inftyis centered if the intersection of finitely many elements of A is infinite. Every ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Selection Principle
In mathematics, a selection principle is a rule asserting the possibility of obtaining mathematically significant objects by selecting elements from given sequences of sets. The theory of selection principles studies these principles and their relations to other mathematical properties. Selection principles mainly describe covering properties, measure- and category-theoretic properties, and local properties in topological spaces, especially function spaces. Often, the characterization of a mathematical property using a selection principle is a nontrivial task leading to new insights on the characterized property. The main selection principles In 1924, Karl Menger introduced the following basis property for metric spaces: Every basis of the topology contains a sequence of sets with vanishing diameters that covers the space. Soon thereafter, Witold Hurewicz observed that Menger's basis property is equivalent to the following selective property: for every sequence of op ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Topological Space
In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance. More specifically, a topological space is a set whose elements are called points, along with an additional structure called a topology, which can be defined as a set of neighbourhoods for each point that satisfy some axioms formalizing the concept of closeness. There are several equivalent definitions of a topology, the most commonly used of which is the definition through open sets, which is easier than the others to manipulate. A topological space is the most general type of a mathematical space that allows for the definition of limits, continuity, and connectedness. Common types of topological spaces include Euclidean spaces, metric spaces and manifolds. Although very general, the concept of topological spaces is fundamental, and used in virtually every branch of modern mathematics. The study of topologi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Baire Space
In mathematics, a topological space X is said to be a Baire space if countable unions of closed sets with empty interior also have empty interior. According to the Baire category theorem, compact Hausdorff spaces and complete metric spaces are examples of Baire spaces. The Baire category theorem combined with the properties of Baire spaces has numerous applications in topology, geometry, analysis, in particular functional analysis. Bourbaki introduced the term "Baire space" in honor of René Baire, who investigated the Baire category theorem in the context of Euclidean space \R^n in his 1899 thesis. Definition The definition that follows is based on the notions of meagre (or first category) set (namely, a set that is a countable union of sets whose closure has empty interior) and nonmeagre (or second category) set (namely, a set that is not meagre). See the corresponding article for details. A topological space X is called a Baire space if it satisfies any of the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Zero-dimensional Space
In mathematics, a zero-dimensional topological space (or nildimensional space) is a topological space that has dimension zero with respect to one of several inequivalent notions of assigning a dimension to a given topological space. A graphical illustration of a nildimensional space is a point. Definition Specifically: * A topological space is zero-dimensional with respect to the Lebesgue covering dimension if every open cover of the space has a refinement which is a cover by disjoint open sets. * A topological space is zero-dimensional with respect to the finite-to-finite covering dimension if every finite open cover of the space has a refinement that is a finite open cover such that any point in the space is contained in exactly one open set of this refinement. * A topological space is zero-dimensional with respect to the small inductive dimension if it has a base consisting of clopen sets. The three notions above agree for separable, metrisable spaces. Properties of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Separable Space
In mathematics, a topological space is called separable if it contains a countable, dense subset; that is, there exists a sequence \_^ of elements of the space such that every nonempty open subset of the space contains at least one element of the sequence. Like the other axioms of countability, separability is a "limitation on size", not necessarily in terms of cardinality (though, in the presence of the Hausdorff axiom, this does turn out to be the case; see below) but in a more subtle topological sense. In particular, every continuous function on a separable space whose image is a subset of a Hausdorff space is determined by its values on the countable dense subset. Contrast separability with the related notion of second countability, which is in general stronger but equivalent on the class of metrizable spaces. First examples Any topological space that is itself finite or countably infinite is separable, for the whole space is a countable dense subset of itself. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Metric Space
In mathematics, a metric space is a set together with a notion of '' distance'' between its elements, usually called points. The distance is measured by a function called a metric or distance function. Metric spaces are the most general setting for studying many of the concepts of mathematical analysis and geometry. The most familiar example of a metric space is 3-dimensional Euclidean space with its usual notion of distance. Other well-known examples are a sphere equipped with the angular distance and the hyperbolic plane. A metric may correspond to a metaphorical, rather than physical, notion of distance: for example, the set of 100-character Unicode strings can be equipped with the Hamming distance, which measures the number of characters that need to be changed to get from one string to another. Since they are very general, metric spaces are a tool used in many different branches of mathematics. Many types of mathematical objects have a natural notion of distance a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Pseudo-intersection
In mathematical set theory, a pseudo-intersection of a family of sets is an infinite set ''S'' such that each element of the family contains all but a finite number of elements of ''S''. The pseudo-intersection number, sometimes denoted by the fraktur Fraktur () is a calligraphic hand of the Latin alphabet and any of several blackletter typefaces derived from this hand. The blackletter lines are broken up; that is, their forms contain many angles when compared to the curves of the Anti ... letter 𝔭, is the smallest size of a family of infinite subsets of the natural numbers that has the strong finite intersection property but has no pseudo-intersection. References * Set theory {{settheory-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lindelöf Space
In mathematics, a Lindelöf space is a topological space in which every open cover has a countable subcover. The Lindelöf property is a weakening of the more commonly used notion of ''compactness'', which requires the existence of a ''finite'' subcover. A hereditarily Lindelöf space is a topological space such that every subspace of it is Lindelöf. Such a space is sometimes called strongly Lindelöf, but confusingly that terminology is sometimes used with an altogether different meaning. The term ''hereditarily Lindelöf'' is more common and unambiguous. Lindelöf spaces are named after the Finnish mathematician Ernst Leonard Lindelöf. Properties of Lindelöf spaces * Every compact space, and more generally every σ-compact space, is Lindelöf. In particular, every countable space is Lindelöf. * A Lindelöf space is compact if and only if it is countably compact. * Every second-countable space is Lindelöf, but not conversely. For example, there are many compact sp ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Rothberger Space
In mathematics, a Rothberger space is a topological space that satisfies a certain a basic selection principle. A Rothberger space is a space in which for every sequence of open covers \mathcal_1, \mathcal_2, \ldots of the space there are sets U_1 \in \mathcal_1, U_2 \in \mathcal_2, \ldots such that the family \ covers the space. History In 1938, Fritz Rothberger introduced his property known as C''. Characterizations Combinatorial characterization For subsets of the real line, the Rothberger property can be characterized using continuous functions into the Baire space \mathbb^\mathbb. A subset A of \mathbb^\mathbb is guessable if there is a function g\in A such that the sets \ are infinite for all functions f\in A. A subset of the real line is Rothberger iff every continuous image of that space into the Baire space is guessable. In particular, every subset of the real line of cardinality less than \mathrm(\mathcal) is Rothberger. Topological game characterization Le ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Strong Measure Zero Set
In mathematical analysis, a strong measure zero set is a subset ''A'' of the real line with the following property: :for every sequence (ε''n'') of positive reals there exists a sequence (''In'') of intervals such that , ''I''''n'', < ε''n'' for all ''n'' and ''A'' is contained in the union of the ''I''''n''. (Here , ''I''''n'', denotes the length of the interval ''I''''n''.) Every is a strong measure zero set, and so is every union of countably many strong measure zero sets. Every strong measure zero set has 0. The is an exam ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Tychonoff Space
In topology and related branches of mathematics, Tychonoff spaces and completely regular spaces are kinds of topological spaces. These conditions are examples of separation axioms. A Tychonoff space refers to any completely regular space that is also a Hausdorff space; there exist completely regular spaces that are not Tychonoff (i.e. not Hausdorff). Tychonoff spaces are named after Andrey Nikolayevich Tychonoff, whose Russian name (Тихонов) is variously rendered as "Tychonov", "Tikhonov", "Tihonov", "Tichonov", etc. who introduced them in 1930 in order to avoid the pathological situation of Hausdorff spaces whose only continuous real-valued functions are constant maps. Definitions A topological space X is called if points can be separated from closed sets via (bounded) continuous real-valued functions. In technical terms this means: for any closed set A \subseteq X and any point x \in X \setminus A, there exists a real-valued continuous function f : X \to \R suc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Pointwise Convergence
In mathematics, pointwise convergence is one of various senses in which a sequence of functions can converge to a particular function. It is weaker than uniform convergence, to which it is often compared. Definition Suppose that X is a set and Y is a topological space, such as the real or complex numbers or a metric space, for example. A net or sequence of functions \left(f_n\right) all having the same domain X and codomain Y is said to converge pointwise to a given function f : X \to Y often written as \lim_ f_n = f\ \mbox if (and only if) \lim_ f_n(x) = f(x) \text x \text f. The function f is said to be the pointwise limit function of the \left(f_n\right). Sometimes, authors use the term bounded pointwise convergence when there is a constant C such that \forall n,x,\;, f_n(x), .


Properties

This concept is often contrasted with