In
mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, a zero-dimensional topological space (or nildimensional space) is a
topological space
In mathematics, a topological space is, roughly speaking, a Geometry, geometrical space in which Closeness (mathematics), closeness is defined but cannot necessarily be measured by a numeric Distance (mathematics), distance. More specifically, a to ...
that has dimension zero with respect to one of several inequivalent notions of assigning a
dimension
In physics and mathematics, the dimension of a mathematical space (or object) is informally defined as the minimum number of coordinates needed to specify any point within it. Thus, a line has a dimension of one (1D) because only one coo ...
to a given topological space. A graphical illustration of a zero-dimensional space is a
point.
Definition
Specifically:
* A topological space is zero-dimensional with respect to the
Lebesgue covering dimension
In mathematics, the Lebesgue covering dimension or topological dimension of a topological space is one of several different ways of defining the dimension of the space in a
topologically invariant way.
Informal discussion
For ordinary Euclidean ...
if every
open cover
In mathematics, and more particularly in set theory, a cover (or covering) of a set X is a family of subsets of X whose union is all of X. More formally, if C = \lbrace U_\alpha : \alpha \in A \rbrace is an indexed family of subsets U_\alpha\su ...
of the space has a
refinement that is a cover by disjoint open sets.
* A topological space is zero-dimensional with respect to the finite-to-finite covering dimension if every finite open cover of the space has a refinement that is a finite open cover such that any point in the space is contained in exactly one open set of this refinement.
* A topological space is zero-dimensional with respect to the
small inductive dimension if it has a
base consisting of
clopen set
In topology, a clopen set (a portmanteau of closed-open set) in a topological space is a set which is both open and closed. That this is possible may seem counterintuitive, as the common meanings of and are antonyms, but their mathematical de ...
s.
The three notions above agree for
separable,
metrisable spaces.
Properties of spaces with small inductive dimension zero
* A zero-dimensional
Hausdorff space
In topology and related branches of mathematics, a Hausdorff space ( , ), T2 space or separated space, is a topological space where distinct points have disjoint neighbourhoods. Of the many separation axioms that can be imposed on a topologi ...
is necessarily
totally disconnected
In topology and related branches of mathematics, a totally disconnected space is a topological space that has only singletons as connected subsets. In every topological space, the singletons (and, when it is considered connected, the empty set) ...
, but the converse fails. However, a
locally compact
In topology and related branches of mathematics, a topological space is called locally compact if, roughly speaking, each small portion of the space looks like a small portion of a compact space. More precisely, it is a topological space in which e ...
Hausdorff space is zero-dimensional if and only if it is totally disconnected. (See for the non-trivial direction.)
* Zero-dimensional
Polish space
In the mathematical discipline of general topology, a Polish space is a separable space, separable Completely metrizable space, completely metrizable topological space; that is, a space homeomorphic to a Complete space, complete metric space that h ...
s are a particularly convenient setting for
descriptive set theory
In mathematical logic, descriptive set theory (DST) is the study of certain classes of "well-behaved" set (mathematics), subsets of the real line and other Polish spaces. As well as being one of the primary areas of research in set theory, it has a ...
. Examples of such spaces include the
Cantor space
In mathematics, a Cantor space, named for Georg Cantor, is a topological abstraction of the classical Cantor set: a topological space is a Cantor space if it is homeomorphic to the Cantor set. In set theory, the topological space 2ω is called "the ...
and
Baire space
In mathematics, a topological space X is said to be a Baire space if countable unions of closed sets with empty interior also have empty interior.
According to the Baire category theorem, compact Hausdorff spaces and complete metric spaces are ...
.
* Hausdorff zero-dimensional spaces are precisely the
subspaces of topological
powers where
is given the
discrete topology
In topology, a discrete space is a particularly simple example of a topological space or similar structure, one in which the points form a , meaning they are '' isolated'' from each other in a certain sense. The discrete topology is the finest to ...
. Such a space is sometimes called a
Cantor cube. If is
countably infinite
In mathematics, a set is countable if either it is finite or it can be made in one to one correspondence with the set of natural numbers. Equivalently, a set is ''countable'' if there exists an injective function from it into the natural numbe ...
,
is the Cantor space.
Manifolds
All points of a zero-dimensional
manifold
In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n-dimensional manifold, or ''n-manifold'' for short, is a topological space with the property that each point has a N ...
are
isolated.
Notes
*
*
*
References
{{Dimension topics
Dimension
0
Descriptive set theory
Properties of topological spaces
Space, topological