HOME
The Info List - Thousand


--- Advertisement ---



1000
1000
or one thousand is the natural number following 999 and preceding 1001. In most English-speaking countries, it is often written with a comma separating the thousands unit: 1,000. It may also be described as the short thousand in historical discussion of medieval contexts where it might be confused with the Germanic concept of the "long thousand" (1200).

Contents

1 In mathematics 2 In time 3 In popular culture 4 Miscellaneous 5 Music 6 Selected numbers in the range 1001–1999

6.1 1001 to 1099 6.2 1100 to 1199 6.3 1200 to 1299 6.4 1300 to 1399 6.5 1400 to 1499 6.6 1500 to 1599 6.7 1600 to 1699 6.8 1700 to 1799 6.9 1800 to 1899 6.10 1900 to 1999

7 References

In mathematics[edit]

The decimal representation for one thousand is

1000—a one followed by three zeros, in the general notation ; 1 × 103—in engineering notation, which for this number coincides with : 1 × 103 exactly—in scientific normalized exponential notation ; 1 E+3 exactly—in scientific E notation.

The SI prefix
SI prefix
for a thousand is kilo-, with the official symbol k—for instance, prefixed to "metre" or its symbol "m", kilometre or km signifies a thousand metres. As such, people occasionally represent the number in a non-standard notation by replacing the last three zeros of the general numeral with "K": for instance, 30K for 30,000. By the SI writing style, a space can be used as a thousands separator, i.e., to separate the digits of a number at every power of 1 000. The sum of Euler's totient function
Euler's totient function
over the first 57 integers is 1000. Prime Curios! mentions that 1000
1000
is the smallest number that generates three primes in the fastest way possible by concatenation of decremented numbers (1000999, 1000999998997, and 1000999998997996995994993 are prime). The criterion excludes counting the number itself. 1000
1000
is a Harshad number in base 10.

In time[edit]

A millennium is 1000
1000
years. The year 1000
1000
was the last year of the 1st millennium.

In popular culture[edit]

A grand is a slang term for one thousand units of a given currency, usually dollars or pounds. Several grand can be shortened to Gs. The symbol K is sometimes used for a thousand; for example, in referring to units of salary or in reference to the Y2K
Y2K
computer bug. Especially in the United States, the gambling community often refers to denominations of $ 1000
1000
as dimes. The idiom "a picture is worth a thousand words". According to an ancient Japanese legend, anyone who folds a thousand origami cranes will be granted a wish by a crane. The thousandth of something is often celebrated, as with other round numbers. A good example is a millennium.

Miscellaneous[edit]

Thousand Oaks, California Metal Mining SIC Code Thousand Island dressing 1000
1000
Families: das Familienalbum des Planeten Erde, a picture book by Uwe Ommer Expedition of the Thousand

Music[edit]

Thousand Foot Krutch, an alternative rock band I Feel It/Thousand, a 1993 techno single by Moby A Thousand Suns, a 2010 album by Linkin Park A Thousand Years, a 2011 song by Christina Perri A Thousand Miles, a 2002 song by Vanessa Carlton A Thousand Answers, a 2012 song by The Hives 1000hp, a 2014 song by Godsmack

Selected numbers in the range 1001–1999[edit] 1001 to 1099[edit]

1001 – sphenic number (7 × 11 × 13), pentagonal number, pentatope number 1002 – sphenic number, Mertens function
Mertens function
zero, abundant number 1004 – heptanacci number[1] 1005 – Mertens function
Mertens function
zero 1008 – divisible by the number of primes below it 1009 – smallest four-digit prime, palindromic in bases 11, 15, 19, 24 and 28: (83811, 47415, 2F219, 1I124, 18128) 1010 – Mertens function
Mertens function
zero 1011 – The largest number that 2n contains 101 and doesn't contain 11011, and it is a harshad number in bases 5, 10, 15, 20, 25, 30, 35, 40, 50, 50, 55, 60, 65, 70, 75 (and 202 other bases) and it's a number in the sequence starting at 74: 74, 198, 345, 1011, 2769, 5045, 8296, 16666, 32964... 1013 – Sophie Germain prime,[2] centered square number,[3] Mertens function zero 1014 – Mertens function
Mertens function
zero 1015 – square pyramidal number[4] 1016 – member of the Mian–Chowla sequence,[5] stella octangula number 1017 – Brick Squad 1018 – Mertens function
Mertens function
zero 1019 – Sophie Germain prime,[2] safe prime[6] 1020 – polydivisible number 1022 – Friedman number 1023 – the highest number one can count to on one's fingers using binary; also the magic number used in Global Positioning System signals 1024 – 210, the number of bytes in a kilobyte (in 1999, the IEC coined kibibyte to use for 1024 with kilobyte being 1000, but this convention has not been widely adopted) 1027 – sum of the squares of the first eight primes; can be written from base 2 to base 18 using only the digits 0 to 9. 1028 – sum of totient function for first 58 integers; can be written from base 2 to base 18 using only the digits 0 to 9. 1029 – can be written from base 2 to base 18 using only the digits 0 to 9. 1031 – Sophie Germain prime,[2] super-prime 1033 – locale ID of English (United States) in (some version of) Windows.[7] 1035 – triangular number,[8] hexagonal number[9] 1049 – Sophie Germain prime,[2] highly cototient number[10] 1051 – centered pentagonal number,[11] centered decagonal number 1056 – pronic number[12] 1060 – sum of the first 25 primes 1063 – super-prime, sum of seven consecutive primes (137 + 139 + 149 + 151 + 157 + 163 + 167) 1071 – heptagonal number[13] 1072 – centered heptagonal number[14] 1079 – every positive integer is the sum of at most 1079 tenth powers. 1080 – pentagonal number[15] 1081 – triangular number,[8] member of Padovan sequence[16] 1086 – Smith number,[17] sum of totient function for first 59 integers 1087 – super-prime, cousin prime, lucky prime,[18] Kynea number[19] 1089 – 332, nonagonal number, centered octagonal number, first natural integer which digits in its decimal expression get reversed when multiplied by 9.[20] 1091 – cousin prime and twin prime 1092 – divisible by the number of primes below it 1093 – the smallest Wieferich prime (the only other known Wieferich prime is 3511[21]), twin prime and star number[22]

1100 to 1199[edit]

1102 – sum of totient function for first 60 integers 1103 – Sophie Germain prime,[2] balanced prime[23] 1104 – Keith number[24] 1105 – Carmichael number,[25] magic constant of n × n normal magic square and n-queens problem for n = 13, decagonal number,[26] centered square number,[3] 1105 = 332 + 42 = 322 + 92 = 312 + 122 = 232 + 242 1116 – divisible by the number of primes below it 1122 – pronic number,[12] divisible by the number of primes below it 1123 – balanced prime[23] 1124 – Leyland number[27] 1128 – triangular number,[8] hexagonal number,[9] divisible by the number of primes below it 1134 - divisible by the number of primes below it 1138 – recurring number in the works of George Lucas
George Lucas
and his companies, beginning with his first feature film – THX 1138; particularly, a special code for Easter eggs on Star Wars
Star Wars
DVDs. 1140 – tetrahedral number[28] 1151 – first prime following a prime gap of 22.[29] 1152 – highly totient number[30] 1153 – super-prime, Proth prime[31] 1156 – 342, octahedral number,[32] centered pentagonal number,[11] centered hendecagonal number.[33] 1159 – member of the Mian–Chowla sequence[5] 1161 – sum of the first 26 primes 1162 – pentagonal number,[15] sum of totient function for first 61 integers 1169 – highly cototient number[10] 1170 – highest possible score in a National Academic Quiz Tournaments (NAQT) match 1171 – super-prime 1176 – triangular number[8] 1177 – heptagonal number[13] 1184 – amicable number with 1210[34] 1187 – safe prime,[6] Stern prime,[35] balanced prime[23] 1190 – pronic number[12] 1192 – sum of totient function for first 62 integers 1198 – centered heptagonal number[14]

1200 to 1299[edit]

1200 – the long thousand, ten "long hundreds" of 120 each, the traditional reckoning of large numbers in Germanic languages, the number of households the Nielsen ratings sample[36] 1201 – centered square number,[3] super-prime, centered decagonal number 1210 – amicable number with 1184[37] 1213 – emirp 1216 – nonagonal number[38] 1217 – super-prime, Proth prime[31] 1219 – Mertens function
Mertens function
zero 1220 – Mertens function
Mertens function
zero 1223 – Sophie Germain prime,[2] balanced prime, 200th prime number[23] 1225 – 352, triangular number, square triangular number,[39] hexagonal number,[9] centered octagonal number[40] 1228 – sum of totient function for first 63 integers 1229 – Sophie Germain prime,[2] number of primes between 0 and 10000 1233 – 122 + 332 1237 – prime of the form 2p-1 1240 – square pyramidal number[4] 1241 – centered cube number[41] 1242 – decagonal number[26] 1247 – pentagonal number[15] 1249 – emirp, trimorphic number[42] 1255 – Mertens function
Mertens function
zero 1256 – Mertens function
Mertens function
zero 1258 – Mertens function
Mertens function
zero 1259 – highly cototient number[10] 1260 – highly composite number,[43] pronic number,[12] the smallest vampire number,[44] sum of totient function for first 64 integers, this number appears twice in the Book of Revelation 1261 – star number,[22] Mertens function
Mertens function
zero 1264 – sum of the first 27 primes 1266 – centered pentagonal number,[11] Mertens function
Mertens function
zero 1270 – Mertens function
Mertens function
zero 1275 – triangular number,[8] sum of the first 50 natural numbers 1279 – Mertens function
Mertens function
zero 1280 – Mertens function
Mertens function
zero 1282 – Mertens function
Mertens function
zero 1283 – safe prime[6] 1285 – Mertens function
Mertens function
zero 1288 – heptagonal number[13] 1289 – Sophie Germain prime,[2] Mertens function
Mertens function
zero 1291 – Mertens function
Mertens function
zero 1292 – Mertens function
Mertens function
zero 1296 – 64, 362, sum of the cubes of the first eight positive integers, the number of rectangles on a normal 8 × 8 chessboard, also the maximum font size allowed in Adobe InDesign 1297 – super-prime, Mertens function
Mertens function
zero 1299 – Mertens function
Mertens function
zero

1300 to 1399[edit]

1300 – Sum of the first 4 fifth powers, mertens function zero, largest possible win margin in an NAQT match 1301 – centered square number[3] 1302 – Mertens function
Mertens function
zero 1306 – Mertens function
Mertens function
zero. In base 10, raising the digits of 1306 to powers of successive integers equals itself: 1306 = 11 + 32 + 03 + 64. 135, 175, 518, and 598 also have this property. 1307 – safe prime[6] 1308 – sum of totient function for first 65 integers 1309 – the first sphenic number followed by two consecutive such number 1312 – member of the Mian–Chowla sequence;[5] code for "ACAB" itself an acronym for "all cops are bastards"[45] 1318 – Mertens function
Mertens function
zero 1319 – safe prime[6] 1325 – Markov number[46] 1326 – triangular number,[8] hexagonal number,[9] Mertens function zero 1327 – first prime followed by 33 consecutive composite numbers 1328 – sum of totient function for first 66 integers 1329 – Mertens function
Mertens function
zero 1330 – tetrahedral number,[27] forms a Ruth–Aaron pair with 1331 under second definition 1331 – 113, centered heptagonal number,[14] forms a Ruth–Aaron pair with 1330 under second definition. This is the only cube of the form x2 + x − 1, for x = 36. 1332 – pronic number[12] 1335 – pentagonal number,[15] Mertens function
Mertens function
zero 1336 – Mertens function
Mertens function
zero 1337 – Used in the novel form of spelling called leet. Approximate melting point of gold in kelvins. 1338 – Mertens function
Mertens function
zero 1342 – Mertens function
Mertens function
zero 1350 – nonagonal number[38] 1361 – first prime following a prime gap of 34,[29] centered decagonal number 1365 – pentatope number[47] 1367 – safe prime,[6] balanced prime, sum of three, nine, and eleven consecutive primes (449 + 457 + 461, 131 + 137 + 139 + 149 + 151 + 157 + 163 + 167 + 173, and 101 + 103 + 107 + 109 + 113 + 127 + 131 + 137 + 139 + 149 + 151),[23] 1369 – 372, centered octagonal number[40] 1371 – sum of the first 28 primes 1378 – triangular number[8] 1379 – magic constant of n × n normal magic square and n-queens problem for n = 14. 1381 – centered pentagonal number[11] 1387 – 5th Fermat pseudoprime of base 2,[48] 22nd centered hexagonal number and the 19th decagonal number,[26] second Super-Poulet number.[49] 1394 – sum of totient function for first 67 integers 1395 – vampire number,[44] member of the Mian–Chowla sequence[5]

1400 to 1499[edit]

1404 – heptagonal number[13] 1405 – 262 + 272, 72 + 82 + … + 162, centered square number[3] 1406 – pronic number,[12] semi-meandric number[50] 1409 – super-prime, Sophie Germain prime,[2] smallest number whose eighth power is the sum of 8 eighth powers, Proth prime[31] 1419 – Zeisel number[51] 1425 – self-descriptive number in base 5 1426 – sum of totient function for first 68 integers, pentagonal number[15] 1430 – Catalan number[52] 1431 – triangular number,[8] hexagonal number[9] 1432 – member of Padovan sequence[16] 1433 – super-prime, Typical port used for remote connections to Microsoft
Microsoft
SQL Server databases 1435 – vampire number;[44] the standard railway gauge in millimetres, equivalent to 4' 8½" 1439 – Sophie Germain prime,[2] safe prime[6] 1440 – a highly totient number[30] and a 481-gonal number. Also, the number of minutes in one day, the blocksize of a standard ​3 1⁄2″ floppy disk, and the horizontal resolution of WXGA(II) computer displays 1441 – star number[22] 1444 – 382, smallest pandigital number in Roman numerals 1447 – super-prime, happy number 1451 – Sophie Germain prime[2] 1458 – maximum determinant of an 11 by 11 matrix of zeroes 1459 – Sexy prime with 1453, sum of nine consecutive primes (139 + 149 + 151 + 157 + 163 + 167 + 173 + 179 + 181), pierpont prime 1469 – octahedral number,[32] highly cototient number[10] 1470 – pentagonal pyramidal number,[53] sum of totient function for first 69 integers 1471 – super-prime, centered heptagonal number[14] 1480 – sum of the first 29 primes 1481 – Sophie Germain prime[2] 1482 – pronic number[12] 1485 – triangular number 1487 – safe prime[6] 1490 – tetranacci number[54] 1491 – nonagonal number,[38] Mertens function
Mertens function
zero 1492 – Mertens function
Mertens function
zero 1493 – Stern prime[35] 1494 – sum of totient function for first 70 integers 1496 – square pyramidal number[4] 1499 – Sophie Germain prime,[2] super-prime

1500 to 1599[edit]

1501 – centered pentagonal number[11] 1510 – deficient number, odious number 1511 – Sophie Germain prime,[2] balanced prime[23] 1513 – centered square number[3] 1518 – Mertens function
Mertens function
zero 1519 – Mertens function
Mertens function
zero 1520 – pentagonal number,[15] Mertens function
Mertens function
zero, forms a Ruth–Aaron pair with 1521 under second definition 1521 – 392, Mertens function
Mertens function
zero, centered octagonal number,[40] forms a Ruth–Aaron pair with 1520 under second definition 1523 – super-prime, Mertens function
Mertens function
zero, safe prime,[6] member of the Mian–Chowla sequence[5] 1524 – Mertens function
Mertens function
zero 1525 – heptagonal number,[13] Mertens function
Mertens function
zero 1527 – Mertens function
Mertens function
zero 1528 – Mertens function
Mertens function
zero 1530 – vampire number[44] 1531 – centered decagonal number, Mertens function
Mertens function
zero 1532 – Mertens function
Mertens function
zero 1535 – Thabit number 1537 – Keith number,[24] Mertens function
Mertens function
zero 1540 – triangular number, hexagonal number,[9] decagonal number,[26] tetrahedral number[27] 1543 – Mertens function
Mertens function
zero 1544 – Mertens function
Mertens function
zero 1546 – Mertens function
Mertens function
zero 1556 – sum of the squares of the first nine primes 1559 – Sophie Germain prime[2] 1560 – pronic number[12] 1564 – sum of totient function for first 71 integers 1572 – member of the Mian–Chowla sequence[5] 1575 – odd abundant number[55] 1583 – Sophie Germain prime 1588 – sum of totient function for first 72 integers 1593 – sum of the first 30 primes 1596 – triangular number 1597 – Fibonacci number,[56] Markov number,[46] super-prime, emirp

1600 to 1699[edit]

1600 – 402, repdigit in base 7 (44447), street number on Pennsylvania Avenue of the White House, Meters; Common High School Track Event, perfect score on SAT
SAT
(except from 2005-2015) 1601 – Sophie Germain prime, Proth prime,[31] the novel 1601 (Mark Twain) 1617 – pentagonal number[15] 1618 – centered heptagonal number[14] 1619 – safe prime[6] 1621 – super-prime 1625 – centered square number[3] 1626 – centered pentagonal number[11] 1633 – star number[22] 1638 – harmonic divisor number[57] 1639 – nonagonal number[38] 1640 – pronic number[12] 1649 – highly cototient number,[10] Leyland number[27] 1651 – heptagonal number[13] 1653 – triangular number, hexagonal number[9] 1657 – cuban prime,[58] prime of the form 2p-1 1660 – sum of totient function for first 73 integers 1666 – largest efficient pandigital number in Roman numerals
Roman numerals
(each symbol occurs exactly once) 1669 – super-prime 1679 – highly cototient number,[10] semiprime (23 × 73, see also Arecibo message) 1680 – highly composite number[43] 1681 – 412, smallest number yielded by the formula n2 + n + 41 that is not a prime; centered octagonal number[40] 1682 – member of a Ruth–Aaron pair (first definition) 1683 – member of a Ruth–Aaron pair (first definition) 1695 – magic constant of n × n normal magic square and n-queens problem for n = 15. 1696 – sum of totient function for first 74 integers

1700 to 1799[edit]

1701 – decagonal number, hull number of the U.S.S. Enterprise on Star Trek 1702 – palindromic in 3 consecutive bases: 89814, 78715, 6A616 1705 – tribonacci number[59] 1709 – first of a sequence of eight primes formed by adding 57 in the middle. 1709, 175709, 17575709, 1757575709, 175757575709, 17575757575709, 1757575757575709 and 175757575757575709 are all prime, but 17575757575757575709 = 232433 × 75616446785773 1711 – triangular number, centered decagonal number 1717 – pentagonal number[15] 1720 – sum of the first 31 primes 1722 – Giuga number,[60] pronic number[12] 1723 – super-prime 1728 – the quantity expressed as 1000
1000
in duodecimal, that is, the cube of twelve (called a great gross), and so, the number of cubic inches in a cubic foot, palindromic in base 11 (133111) and 23 (36323) 1729 – taxicab number, Carmichael number, Zeisel number, centered cube number, Hardy–Ramanujan number. In the decimal expansion of e the first time all 10 digits appear in sequence starts at the 1729th decimal place. In 1979 the rock musical Hair closed on Broadway in New York City after 1729 performances. Palindromic in bases 12, 32, 36. 1733 – Sophie Germain prime, palindromic in bases 3, 18, 19. 1736 – sum of totient function for first 75 integers 1741 – super-prime, centered square number[3] 1747 – balanced prime[23] 1753 – balanced prime[23] 1756 – centered pentagonal number[11] 1760 – the number of yards in a mile 1764 – 422 1770 – triangular number, hexagonal number,[9] Town of Seventeen Seventy in Australia 1771 – tetrahedral number[27] 1772 – centered heptagonal number,[14] sum of totient function for first 76 integers 1782 – heptagonal number[13] 1785 – square pyramidal number[4] 1787 – super-prime, sum of eleven consecutive primes (137 + 139 + 149 + 151 + 157 + 163 + 167 + 173 + 179 + 181 + 191) 1791 – largest natural number that cannot be expressed as a sum of at most four hexagonal numbers. 1794 – nonagonal number[38]

1800 to 1899[edit]

1800 – pentagonal pyramidal number,[53] also, in da Ponte's Don Giovanni, the number of women Don Giovanni
Don Giovanni
had slept with so far when confronted by Donna Elvira, according to Leporello's tally 1801 – cuban prime, sum of five and nine consecutive primes (349 + 353 + 359 + 367 + 373 and 179 + 181 + 191 + 193 + 197 + 199 + 211 + 223 + 227)[58] 1806 – pronic number,[12] product of first four terms of Sylvester's sequence, primary pseudoperfect number,[61] only number for which n equals the denominator of the nth Bernoulli number[62] 1807 – fifth term of Sylvester’s sequence[63] 1811 – Sophie Germain prime 1820 – pentagonal number,[15] pentatope number[47] 1821 – member of the Mian–Chowla sequence[5] 1823 – super-prime, safe prime[6] 1827 – vampire number[44] 1828 – meandric number, open meandric number 1830 – triangular number 1832 – sum of totient function for first 77 integers 1834 – octahedral number,[32] sum of the cubes of the first five primes 1836 – factor by which a proton is more massive than an electron 1837 – star number[22] 1841 – Mertens function
Mertens function
zero 1843 – Mertens function
Mertens function
zero 1844 – Mertens function
Mertens function
zero 1845 – Mertens function
Mertens function
zero 1847 – super-prime 1849 – 432, palindromic in base 6 (= 123216), centered octagonal number[40] 1851 – sum of the first 32 primes 1853 – Mertens function
Mertens function
zero 1854 – Mertens function
Mertens function
zero 1856 – sum of totient function for first 78 integers 1857 – Mertens function
Mertens function
zero 1861 – centered square number,[3] Mertens function
Mertens function
zero 1862 – Mertens function
Mertens function
zero, forms a Ruth–Aaron pair with 1863 under second definition 1863 – Mertens function
Mertens function
zero, forms a Ruth–Aaron pair with 1862 under second definition 1864 – Mertens function
Mertens function
zero 1866 – Mertens function
Mertens function
zero 1870 – decagonal number[26] 1885 – Zeisel number[51] 1889 – Sophie Germain prime, highly cototient number[10] 1891 – triangular number, hexagonal number,[9] centered pentagonal number[11] 1892 – pronic number[12] 1896 – member of the Mian–Chowla sequence[5] 1897 – member of Padovan sequence[16]

1900 to 1999[edit]

1900 – 1900 (film)
1900 (film)
or Novecento, 1977 movie 1901 – Sophie Germain prime, centered decagonal number 1907 – safe prime,[6] balanced prime[23] 1909 – hyperperfect number[64] 1913 – super-prime 1918 – heptagonal number[13] 1926 – pentagonal number[15] 1929 – Mertens function
Mertens function
zero 1931 – Sophie Germain prime 1933 – centered heptagonal number,[14] prime number 1934 – sum of totient function for first 79 integers 1936 – 442, 18-gonal number,[65] 324-gonal number. 1938 – Mertens function
Mertens function
zero 1951 – cuban prime[58] 1953 – triangular number 1956 – nonagonal number[38] 1966 – sum of totient function for first 80 integers 1969 – Only value less than four million for which a "mod-ification" of the standard Ackermann Function does not stabilize[66] 1973 – Sophie Germain prime 1980 – pronic number[12] 1984 – 11111000000 in binary, see also: 1984 (other) 1985 – centered square number[3] 1987 – 300th prime number 1988 – sum of the first 33 primes

References[edit]

Wikimedia Commons has media related to 1000
1000
(number).

Mathematics portal

^ "Sloane's A122189 : Heptanacci numbers". The On-Line Encyclopedia of Integer
Integer
Sequences. OEIS Foundation. Retrieved 2017-07-13.  ^ a b c d e f g h i j k l m n o "Sloane's A005384 : Sophie Germain primes". The On-Line Encyclopedia of Integer
Integer
Sequences. OEIS Foundation. Retrieved 2016-06-12.  ^ a b c d e f g h i j "Sloane's A001844 : Centered square numbers". The On-Line Encyclopedia of Integer
Integer
Sequences. OEIS Foundation. Retrieved 2016-06-12.  ^ a b c d "Sloane's A000330 : Square pyramidal numbers". The On-Line Encyclopedia of Integer
Integer
Sequences. OEIS Foundation. Retrieved 2016-06-12.  ^ a b c d e f g h "Sloane's A005282 : Mian-Chowla sequence". The On-Line Encyclopedia of Integer
Integer
Sequences. OEIS Foundation. Retrieved 2016-06-12.  ^ a b c d e f g h i j k l "Sloane's A005385 : Safe primes". The On-Line Encyclopedia of Integer
Integer
Sequences. OEIS Foundation. Retrieved 2016-06-12.  ^ [1]. ^ a b c d e f g h "Sloane's A000217 : Triangular numbers". The On-Line Encyclopedia of Integer
Integer
Sequences. OEIS Foundation. Retrieved 2016-06-12.  ^ a b c d e f g h i "Sloane's A000384 : Hexagonal numbers". The On-Line Encyclopedia of Integer
Integer
Sequences. OEIS Foundation. Retrieved 2016-06-12.  ^ a b c d e f g "Sloane's A100827 : Highly cototient numbers". The On-Line Encyclopedia of Integer
Integer
Sequences. OEIS Foundation. Retrieved 2016-06-12.  ^ a b c d e f g h "Sloane's A005891 : Centered pentagonal numbers". The On-Line Encyclopedia of Integer
Integer
Sequences. OEIS Foundation. Retrieved 2016-06-12.  ^ a b c d e f g h i j k l m "Sloane's A002378 : Oblong (or promic, pronic, or heteromecic) numbers". The On-Line Encyclopedia of Integer
Integer
Sequences. OEIS Foundation. Retrieved 2016-06-12.  ^ a b c d e f g h "Sloane's A000566 : Heptagonal numbers". The On-Line Encyclopedia of Integer
Integer
Sequences. OEIS Foundation. Retrieved 2016-06-12.  ^ a b c d e f g "Sloane's A069099 : Centered heptagonal numbers". The On-Line Encyclopedia of Integer
Integer
Sequences. OEIS Foundation. Retrieved 2016-06-12.  ^ a b c d e f g h i j "Sloane's A000326 : Pentagonal numbers". The On-Line Encyclopedia of Integer
Integer
Sequences. OEIS Foundation. Retrieved 2016-06-12.  ^ a b c "Sloane's A000931 : Padovan sequence". The On-Line Encyclopedia of Integer
Integer
Sequences. OEIS Foundation. Retrieved 2016-06-12.  ^ "Sloane's A006753 : Smith numbers". The On-Line Encyclopedia of Integer
Integer
Sequences. OEIS Foundation. Retrieved 2016-06-12.  ^ "Sloane's A031157 : Numbers that are both lucky and prime". The On-Line Encyclopedia of Integer
Integer
Sequences. OEIS Foundation. Retrieved 2016-06-12.  ^ "Sloane's A093069 : a(n) = (2^n + 1)^2 - 2". The On-Line Encyclopedia of Integer
Integer
Sequences. OEIS Foundation. Retrieved 2016-06-12.  ^ "Sloane's A001232 : Numbers n such that 9*n = (n written backwards)". The On-Line Encyclopedia of Integer
Integer
Sequences. OEIS Foundation. Retrieved 2016-06-14.  ^ Wells, D. The Penguin Dictionary of Curious and Interesting Numbers London: Penguin Group. (1987): 163 ^ a b c d e "Sloane's A003154 : Centered 12-gonal numbers. Also star numbers". The On-Line Encyclopedia of Integer
Integer
Sequences. OEIS Foundation. Retrieved 2016-06-12.  ^ a b c d e f g h i "Sloane's A006562 : Balanced primes". The On-Line Encyclopedia of Integer
Integer
Sequences. OEIS Foundation. Retrieved 2016-06-12.  ^ a b "Sloane's A007629 : Repfigit (REPetitive FIbonacci-like diGIT) numbers (or Keith numbers)". The On-Line Encyclopedia of Integer
Integer
Sequences. OEIS Foundation. Retrieved 2016-06-12.  ^ "Sloane's A002997 : Carmichael numbers". The On-Line Encyclopedia of Integer
Integer
Sequences. OEIS Foundation. Retrieved 2016-06-12.  ^ a b c d e "Sloane's A001107 : 10-gonal (or decagonal) numbers". The On-Line Encyclopedia of Integer
Integer
Sequences. OEIS Foundation. Retrieved 2016-06-12.  ^ a b c d e "Sloane's A076980 : Leyland numbers". The On-Line Encyclopedia of Integer
Integer
Sequences. OEIS Foundation. Retrieved 2016-06-12.  ^ "Sloane's A000292 : Tetrahedral numbers". The On-Line Encyclopedia of Integer
Integer
Sequences. OEIS Foundation. Retrieved 2016-06-12.  ^ a b "Sloane's A000101 : Increasing gaps between primes (upper end)". The On-Line Encyclopedia of Integer
Integer
Sequences. OEIS Foundation. Retrieved 2016-07-10.  ^ a b "Sloane's A097942 : Highly totient numbers". The On-Line Encyclopedia of Integer
Integer
Sequences. OEIS Foundation. Retrieved 2016-06-12.  ^ a b c d "Sloane's A080076 : Proth primes". The On-Line Encyclopedia of Integer
Integer
Sequences. OEIS Foundation. Retrieved 2016-06-12.  ^ a b c "Sloane's A005900 : Octahedral numbers". The On-Line Encyclopedia of Integer
Integer
Sequences. OEIS Foundation. Retrieved 2016-06-12.  ^ "Sloane's A069125 : a(n) = (11*n^2 - 11*n + 2)/2". The On-Line Encyclopedia of Integer
Integer
Sequences. OEIS Foundation. Retrieved 2016-06-12.  ^ Higgins, Peter (2008). Number
Number
Story: From Counting to Cryptography. New York: Copernicus. p. 61. ISBN 978-1-84800-000-1.  ^ a b "Sloane's A042978 : Stern primes". The On-Line Encyclopedia of Integer
Integer
Sequences. OEIS Foundation. Retrieved 2016-06-12.  ^ Meehan, Eileen R., Why TV is not our fault: television programming, viewers, and who's really in control Lanham, MD: Rowman & Littlefield, 2005 ^ Higgins, ibid. ^ a b c d e f "Sloane's A001106 : 9-gonal (or enneagonal or nonagonal) numbers". The On-Line Encyclopedia of Integer
Integer
Sequences. OEIS Foundation. Retrieved 2016-06-12.  ^ "Sloane's A001110 : Square triangular numbers". The On-Line Encyclopedia of Integer
Integer
Sequences. OEIS Foundation. Retrieved 2016-06-12.  ^ a b c d e "Sloane's A016754 : Odd squares: a(n) = (2n+1)^2. Also centered octagonal numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-12.  ^ "Sloane's A005898 : Centered cube numbers". The On-Line Encyclopedia of Integer
Integer
Sequences. OEIS Foundation. Retrieved 2016-06-12.  ^ "Sloane's A033819 : Trimorphic numbers". The On-Line Encyclopedia of Integer
Integer
Sequences. OEIS Foundation. Retrieved 2016-06-12.  ^ a b "Sloane's A002182 : Highly composite numbers". The On-Line Encyclopedia of Integer
Integer
Sequences. OEIS Foundation. Retrieved 2016-06-12.  ^ a b c d e "Sloane's A014575 : Vampire numbers". The On-Line Encyclopedia of Integer
Integer
Sequences. OEIS Foundation. Retrieved 2016-06-12.  ^ "Constitutional Court allows 'FCK CPS' sticker". 28 April 2015. "...state court in Karlsruhe ruled that a banner ... that read 'ACAB' - an abbreviation of 'all cops are bastards' ... a punishable insult. ... A court in Frankfurt ... the numbers '1312' constituted an insult ... the numerals stand for the letters ACAB's position in the alphabet.  ^ a b "Sloane's A002559 : Markoff (or Markov) numbers". The On-Line Encyclopedia of Integer
Integer
Sequences. OEIS Foundation. Retrieved 2016-06-12.  ^ a b "Sloane's A000332 : Binomial coefficient binomial(n,4) = n*(n-1)*(n-2)*(n-3)/24". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-12.  ^ "Sloane's A001567 : Fermat pseudoprimes to base 2". The On-Line Encyclopedia of Integer
Integer
Sequences. OEIS Foundation. Retrieved 2016-06-12.  ^ "Sloane's A050217 : Super-Poulet numbers". The On-Line Encyclopedia of Integer
Integer
Sequences. OEIS Foundation. Retrieved 2016-06-12.  ^ "Sloane's A000682 : Semimeanders". The On-Line Encyclopedia of Integer
Integer
Sequences. OEIS Foundation. Retrieved 2016-06-12.  ^ a b "Sloane's A051015 : Zeisel numbers". The On-Line Encyclopedia of Integer
Integer
Sequences. OEIS Foundation. Retrieved 2016-06-12.  ^ "Sloane's A000108 : Catalan numbers". The On-Line Encyclopedia of Integer
Integer
Sequences. OEIS Foundation. Retrieved 2016-06-12.  ^ a b "Sloane's A002411 : Pentagonal pyramidal numbers". The On-Line Encyclopedia of Integer
Integer
Sequences. OEIS Foundation. Retrieved 2016-06-12.  ^ "Sloane's A000078 : Tetranacci numbers". The On-Line Encyclopedia of Integer
Integer
Sequences. OEIS Foundation. Retrieved 2016-06-12.  ^ "Sloane's A005231 : Odd abundant numbers". The On-Line Encyclopedia of Integer
Integer
Sequences. OEIS Foundation. Retrieved 2016-06-12.  ^ "Sloane's A000045 : Fibonacci numbers". The On-Line Encyclopedia of Integer
Integer
Sequences. OEIS Foundation. Retrieved 2016-06-12.  ^ "Sloane's A001599 : Harmonic or Ore numbers". The On-Line Encyclopedia of Integer
Integer
Sequences. OEIS Foundation. Retrieved 2016-06-12.  ^ a b c "Sloane's A002407 : Cuban primes". The On-Line Encyclopedia of Integer
Integer
Sequences. OEIS Foundation. Retrieved 2016-06-12.  ^ "Sloane's A000073 : Tribonacci numbers". The On-Line Encyclopedia of Integer
Integer
Sequences. OEIS Foundation. Retrieved 2016-06-12.  ^ "Sloane's A007850 : Giuga numbers". The On-Line Encyclopedia of Integer
Integer
Sequences. OEIS Foundation. Retrieved 2016-06-12.  ^ "Sloane's A054377 : Primary pseudoperfect numbers". The On-Line Encyclopedia of Integer
Integer
Sequences. OEIS Foundation. Retrieved 2016-06-12.  ^ Kellner, Bernard C.; ‘The equation denom(Bn) = n has only one solution’ ^ "Sloane's A000058 : Sylvester's sequence". The On-Line Encyclopedia of Integer
Integer
Sequences. OEIS Foundation. Retrieved 2016-06-12.  ^ "Sloane's A034897 : Hyperperfect numbers". The On-Line Encyclopedia of Integer
Integer
Sequences. OEIS Foundation. Retrieved 2016-06-12.  ^ "Sloane's A051870 : 18-gonal numbers". The On-Line Encyclopedia of Integer
Integer
Sequences. OEIS Foundation. Retrieved 2016-06-12.  ^ Jon Froemke & Jerrold W. Grossman (Feb 1993). "A Mod-n Ackermann Function, or What's So Special
Special
About 1969?". The American Mathematical Monthly. Mathematical Association of America. 100 (2): 180–183. JSTOR 2323780. 

v t e

Large numbers

Examples in numerical order

Thousand Ten thousand Hundred thousand Million Ten million Hundred million Billion Trillion Quadrillion Quintillion Sextillion Septillion Octillion Nonillion Googol Googolplex Skewes's number Googolduplex Moser's number Graham's number TREE(3) SSCG(3) Rayo's number Transfinite numbers

Expression methods

Notations

Knuth's up-arrow notation Conway chained arrow notation Steinhaus–Moser notation

Operators

Hyperoperation

Tetration Pentation

Ackermann function Bowers's operators

Related articles

Infinitesimal Number
Number
systems Number
Number
names Orders of magnitude List of notable numbers Indefinite and fictitious numbers Extended real number line Power of two Power of 10 Long and short scales Titanic prime Gigantic prime Megaprime Largest known prime number

.