Thermoelectric materials
   HOME

TheInfoList



OR:

Thermoelectric materials show the thermoelectric effect in a strong or convenient form. The ''thermoelectric effect'' refers to phenomena by which either a
temperature Temperature is a physical quantity that expresses quantitatively the perceptions of hotness and coldness. Temperature is measured with a thermometer. Thermometers are calibrated in various temperature scales that historically have relied o ...
difference creates an
electric potential The electric potential (also called the ''electric field potential'', potential drop, the electrostatic potential) is defined as the amount of work energy needed to move a unit of electric charge from a reference point to the specific point in ...
or an electric current creates a temperature difference. These phenomena are known more specifically as the Seebeck effect (creating a voltage from temperature difference),
Peltier effect The thermoelectric effect is the direct conversion of temperature differences to electric voltage and vice versa via a thermocouple. A thermoelectric device creates a voltage when there is a different temperature on each side. Conversely, when ...
(driving heat flow with an electric current), and Thomson effect (reversible heating or cooling within a conductor when there is both an electric current and a temperature gradient). While all materials have a nonzero thermoelectric effect, in most materials it is too small to be useful. However, low-cost materials that have a sufficiently strong thermoelectric effect (and other required properties) are also considered for applications including
power generation Electricity generation is the process of generating electric power from sources of primary energy. For utilities in the electric power industry, it is the stage prior to its delivery ( transmission, distribution, etc.) to end users or its stor ...
and
refrigeration The term refrigeration refers to the process of removing heat from an enclosed space or substance for the purpose of lowering the temperature.International Dictionary of Refrigeration, http://dictionary.iifiir.org/search.phpASHRAE Terminology, ht ...
. The most commonly used thermoelectric material is based on bismuth telluride (). Thermoelectric materials are used in thermoelectric systems for cooling or heating in niche applications, and are being studied as a way to regenerate electricity from waste heat.


Thermoelectric figure of merit

The usefulness of a material in thermoelectric systems is determined by the device efficiency. This is determined by the material's
electrical conductivity Electrical resistivity (also called specific electrical resistance or volume resistivity) is a fundamental property of a material that measures how strongly it resists electric current. A low resistivity indicates a material that readily allows ...
(''σ''),
thermal conductivity The thermal conductivity of a material is a measure of its ability to conduct heat. It is commonly denoted by k, \lambda, or \kappa. Heat transfer occurs at a lower rate in materials of low thermal conductivity than in materials of high thermal ...
(''κ''), and Seebeck coefficient (S), which change with
temperature Temperature is a physical quantity that expresses quantitatively the perceptions of hotness and coldness. Temperature is measured with a thermometer. Thermometers are calibrated in various temperature scales that historically have relied o ...
(''T''). The maximum efficiency of the energy conversion process (for both power generation and cooling) at a given temperature point in the material is determined by the thermoelectric materials figure of merit zT, given byzT = .


Device efficiency

The efficiency of a thermoelectric device for electricity generation is given by \eta, defined as \eta = . The maximum efficiency of a thermoelectric device is typically described in terms of its device figure of merit ZT where the maximum device efficiency is approximately given by \eta_\mathrm = , where T_ is the fixed temperature at the hot junction, T_ is the fixed temperature at the surface being cooled, and \bar is the mean of T_ and T_. This maximum efficiency equation is exact when thermoelectric properties are temperature-independent. For a single thermoelectric leg the device efficiency can be calculated from the temperature dependent properties ''S'', ''κ'' and ''σ'' and the heat and electrical current flow through the material. In an actual thermoelectric device, two materials are used (typically one n-type and one p-type) with metal interconnects. The maximum efficiency \eta_\mathrm is then calculated from the efficiency of both legs and the electrical and thermal losses from the interconnects and surroundings. Ignoring these losses and temperature dependencies in ''S'', ''κ'' and ''σ'', an inexact estimate for ZT is given byIoffe, A.F. (1960) ''Physics of semiconductors'', Academic Press Inc., New YorkZ\bar = where \rho is the electrical resistivity, and the properties are averaged over the temperature range; the subscripts n and p denote properties related to the n- and p-type semiconducting thermoelectric materials, respectively. Only when n and p elements have the same and temperature independent properties (S_p = -S_n) does Z\bar = z\bar. Since thermoelectric devices are heat engines, their efficiency is limited by the
Carnot efficiency A Carnot cycle is an ideal thermodynamic cycle proposed by French physicist Sadi Carnot in 1824 and expanded upon by others in the 1830s and 1840s. By Carnot's theorem, it provides an upper limit on the efficiency of any classical thermodynam ...
\frac, the first factor in \eta_\mathrm, while ZT and zT determines the maximum reversibility of the thermodynamic process globally and locally, respectively. Regardless, the
coefficient of performance The coefficient of performance or COP (sometimes CP or CoP) of a heat pump, refrigerator or air conditioning system is a ratio of useful heating or cooling provided to work (energy) required. Higher COPs equate to higher efficiency, lower energy ( ...
of current commercial thermoelectric refrigerators ranges from 0.3 to 0.6, one-sixth the value of traditional vapor-compression refrigerators.


Power factor

Often the thermoelectric power factor is reported for a thermoelectric material, given by \mathrm = \sigma S^2 /m/K^2/math> where ''S'' is the Seebeck coefficient, and ''σ'' is the
electrical conductivity Electrical resistivity (also called specific electrical resistance or volume resistivity) is a fundamental property of a material that measures how strongly it resists electric current. A low resistivity indicates a material that readily allows ...
. Although it is often claimed that TE devices with materials with a higher power factor are able to 'generate' more energy (move more heat or extract more energy from that temperature difference) this is only true for a thermoelectric device with fixed geometry and unlimited heat source and cooling. If the geometry of the device is optimally designed for the specific application, the thermoelectric materials will operate at their peak efficiency which is determined by their zT not \sigma S^2 .


Aspects of materials choice

For good efficiency, materials with high electrical conductivity, low thermal conductivity and high Seebeck coefficient are needed.


Electron state density: metals vs semiconductors

The
band structure In solid-state physics, the electronic band structure (or simply band structure) of a solid describes the range of energy levels that electrons may have within it, as well as the ranges of energy that they may not have (called ''band gaps'' or ...
of
semiconductor A semiconductor is a material which has an electrical conductivity value falling between that of a conductor, such as copper, and an insulator, such as glass. Its resistivity falls as its temperature rises; metals behave in the opposite way ...
s offers better thermoelectric effects than the band structure of metals. The
Fermi energy The Fermi energy is a concept in quantum mechanics usually referring to the energy difference between the highest and lowest occupied single-particle states in a quantum system of non-interacting fermions at absolute zero temperature. In a Fermi ga ...
is below the
conduction band In solid-state physics, the valence band and conduction band are the bands closest to the Fermi level, and thus determine the electrical conductivity of the solid. In nonmetals, the valence band is the highest range of electron energies in ...
causing the state density to be asymmetric around the Fermi energy. Therefore, the average electron energy of the conduction band is higher than the Fermi energy, making the system conducive for charge motion into a lower energy state. By contrast, the Fermi energy lies in the conduction band in metals. This makes the state density symmetric about the Fermi energy so that the average conduction electron energy is close to the Fermi energy, reducing the forces pushing for charge transport. Therefore, semiconductors are ideal thermoelectric materials.Timothy D. Sands (2005)
Designing Nanocomposite Thermoelectric Materials
/ref>


Conductivity

In the efficiency equations above,
thermal conductivity The thermal conductivity of a material is a measure of its ability to conduct heat. It is commonly denoted by k, \lambda, or \kappa. Heat transfer occurs at a lower rate in materials of low thermal conductivity than in materials of high thermal ...
and
electrical conductivity Electrical resistivity (also called specific electrical resistance or volume resistivity) is a fundamental property of a material that measures how strongly it resists electric current. A low resistivity indicates a material that readily allows ...
compete. The thermal conductivity ''κ'' in crystalline solids has mainly two components: :''κ'' = ''κ'' electron + ''κ'' phonon According to the Wiedemann–Franz law, the higher the electrical conductivity, the higher ''κ'' electron becomes. Thus in metals the ratio of thermal to electrical conductivity is about fixed, as the electron part dominates. In semiconductors, the phonon part is important and cannot be neglected. It reduces the efficiency. For good efficiency a low ratio of ''κ'' phonon / ''κ'' electron is desired. Therefore, it is necessary to minimize ''κ'' phonon and keep the electrical conductivity high. Thus semiconductors should be highly doped. G. A. Slack proposed that in order to optimize the figure of merit, phonons, which are responsible for thermal conductivity must experience the material as a glass (experiencing a high degree of
phonon In physics, a phonon is a collective excitation in a periodic, elastic arrangement of atoms or molecules in condensed matter, specifically in solids and some liquids. A type of quasiparticle, a phonon is an excited state in the quantum mechani ...
scattering—lowering
thermal conductivity The thermal conductivity of a material is a measure of its ability to conduct heat. It is commonly denoted by k, \lambda, or \kappa. Heat transfer occurs at a lower rate in materials of low thermal conductivity than in materials of high thermal ...
) while
electrons The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have n ...
must experience it as a
crystal A crystal or crystalline solid is a solid material whose constituents (such as atoms, molecules, or ions) are arranged in a highly ordered microscopic structure, forming a crystal lattice that extends in all directions. In addition, macro ...
(experiencing very little scattering—maintaining
electrical conductivity Electrical resistivity (also called specific electrical resistance or volume resistivity) is a fundamental property of a material that measures how strongly it resists electric current. A low resistivity indicates a material that readily allows ...
): this concept is called phonon glass electron crystal. The figure of merit can be improved through the independent adjustment of these properties.


Quality factor (detailed theory on semiconductors)

The maximum Z\bar of a material is given by the material's quality factor :B= \frac \frac T where k_ is the Boltzmann constant, \hbar is the reduced Planck constant, N_ is the number of degenerated valleys for the band, C_ is the average longitudinal elastic moduli, m_^* is the inertial effective mass, \Xi is the deformation potential coefficient, \kappa_ is the lattice thermal conduction, and T is temperature. The figure of merit, Z\bar, depends on doping concentration and temperature of the material of interest. The material quality factor B is useful because it allows for an intrinsic comparison of possible efficiency between different materials. This relation shows that improving the electronic component \frac, which primarily affects the Seebeck coefficient, will increase the quality factor of a material. A large density of states can be created due to a large number of conducting bands (N_) or by flat bands giving a high band effective mass (m_^*). For isotropic materials m_^*= m_^*. Therefore, it is desirable for thermoelectric materials to have high valley degeneracy in a very sharp band structure. Other complex features of the electronic structure are important. These can be partially quantified using an electronic fitness function.


Materials of interest

Strategies to improve thermoelectric performances include both advanced bulk materials and the use of low-dimensional systems. Such approaches to reduce lattice
thermal conductivity The thermal conductivity of a material is a measure of its ability to conduct heat. It is commonly denoted by k, \lambda, or \kappa. Heat transfer occurs at a lower rate in materials of low thermal conductivity than in materials of high thermal ...
fall under three general material types: (1)
Alloy An alloy is a mixture of chemical elements of which at least one is a metal. Unlike chemical compounds with metallic bases, an alloy will retain all the properties of a metal in the resulting material, such as electrical conductivity, ductili ...
s: create point defects, vacancies, or rattling structures ( heavy-ion species with large vibrational
amplitude The amplitude of a periodic variable is a measure of its change in a single period (such as time or spatial period). The amplitude of a non-periodic signal is its magnitude compared with a reference value. There are various definitions of am ...
s contained within partially filled structural sites) to scatter phonons within the
unit cell In geometry, biology, mineralogy and solid state physics, a unit cell is a repeating unit formed by the vectors spanning the points of a lattice. Despite its suggestive name, the unit cell (unlike a unit vector, for example) does not necessaril ...
crystal; (2) Complex
crystal A crystal or crystalline solid is a solid material whose constituents (such as atoms, molecules, or ions) are arranged in a highly ordered microscopic structure, forming a crystal lattice that extends in all directions. In addition, macro ...
s: separate the phonon glass from the electron crystal using approaches similar to those for superconductors (the region responsible for electron transport should be an electron crystal of a high-mobility semiconductor, while the phonon glass should ideally house disordered structures and
dopant A dopant, also called a doping agent, is a trace of impurity element that is introduced into a chemical material to alter its original electrical or optical properties. The amount of dopant necessary to cause changes is typically very low. Whe ...
s without disrupting the electron crystal, analogous to the charge reservoir in high-Tc superconductors); (3) Multiphase
nanocomposite Nanocomposite is a multiphase solid material where one of the phases has one, two or three dimensions of less than 100 nanometers (nm) or structures having nano-scale repeat distances between the different phases that make up the material. The id ...
s: scatter phonons at the interfaces of nanostructured materials, be they mixed composites or
thin film A thin film is a layer of material ranging from fractions of a nanometer ( monolayer) to several micrometers in thickness. The controlled synthesis of materials as thin films (a process referred to as deposition) is a fundamental step in many ...
superlattices. Materials under consideration for thermoelectric device applications include:


Bismuth chalcogenides and their nanostructures

Materials such as and comprise some of the best performing room temperature thermoelectrics with a temperature-independent figure-of-merit, ZT, between 0.8 and 1.0. Nanostructuring these materials to produce a layered superlattice structure of alternating and layers produces a device within which there is good electrical conductivity but perpendicular to which thermal conductivity is poor. The result is an enhanced ZT (approximately 2.4 at room temperature for p-type). Note that this high value of ZT has not been independently confirmed due to the complicated demands on the growth of such superlattices and device fabrication; however the material ZT values are consistent with the performance of hot-spot coolers made out of these materials and validated at Intel Labs. Bismuth telluride and its solid solutions are good thermoelectric materials at room temperature and therefore suitable for refrigeration applications around 300 K. The Czochralski method has been used to grow single crystalline bismuth telluride compounds. These compounds are usually obtained with directional solidification from melt or powder metallurgy processes. Materials produced with these methods have lower efficiency than single crystalline ones due to the random orientation of crystal grains, but their mechanical properties are superior and the sensitivity to structural defects and impurities is lower due to high optimal carrier concentration. The required carrier concentration is obtained by choosing a nonstoichiometric composition, which is achieved by introducing excess bismuth or tellurium atoms to primary melt or by dopant impurities. Some possible dopants are
halogen The halogens () are a group in the periodic table consisting of five or six chemically related elements: fluorine (F), chlorine (Cl), bromine (Br), iodine (I), astatine (At), and tennessine (Ts). In the modern IUPAC nomenclature, this grou ...
s and group IV and V atoms. Due to the small bandgap (0.16 eV) Bi2Te3 is partially degenerate and the corresponding Fermi-level should be close to the conduction band minimum at room temperature. The size of the band-gap means that Bi2Te3 has high intrinsic carrier concentration. Therefore, minority carrier conduction cannot be neglected for small stoichiometric deviations. Use of telluride compounds is limited by the toxicity and rarity of tellurium.


Lead tellurides

Heremans ''et al.'' (2008) demonstrated that
thallium Thallium is a chemical element with the symbol Tl and atomic number 81. It is a gray post-transition metal that is not found free in nature. When isolated, thallium resembles tin, but discolors when exposed to air. Chemists William Crookes an ...
-doped
lead Lead is a chemical element with the symbol Pb (from the Latin ) and atomic number 82. It is a heavy metal that is denser than most common materials. Lead is soft and malleable, and also has a relatively low melting point. When freshly cut, ...
telluride alloy (PbTe) achieves a ZT of 1.5 at 773 K. Later, Snyder ''et al.'' (2011) reported ZT~1.4 at 750 K in sodium-doped PbTe, and ZT~1.8 at 850 K in sodium-doped PbTe1−xSex alloy. Snyder's group determined that both thallium and
sodium Sodium is a chemical element with the symbol Na (from Latin ''natrium'') and atomic number 11. It is a soft, silvery-white, highly reactive metal. Sodium is an alkali metal, being in group 1 of the periodic table. Its only stable ...
alter the electronic structure of the crystal increasing electronic conductivity. They also claim that
selenium Selenium is a chemical element with the symbol Se and atomic number 34. It is a nonmetal (more rarely considered a metalloid) with properties that are intermediate between the elements above and below in the periodic table, sulfur and tellurium, ...
increases electric conductivity and reduces thermal conductivity. In 2012 another team used lead telluride to convert waste heat to electricity, reaching a ZT of 2.2, which they claimed was the highest yet reported.


Inorganic clathrates

Inorganic
clathrate A clathrate is a chemical substance consisting of a lattice that traps or contains molecules. The word ''clathrate'' is derived from the Latin (), meaning ‘with bars, latticed’. Most clathrate compounds are polymeric and completely envelo ...
s have the general formula AxByC46-y (type I) and AxByC136-y (type II), where B and C are group III and IV elements, respectively, which form the framework where “guest” A atoms (
alkali In chemistry, an alkali (; from ar, القلوي, al-qaly, lit=ashes of the saltwort) is a basic, ionic salt of an alkali metal or an alkaline earth metal. An alkali can also be defined as a base that dissolves in water. A solution of a ...
or
alkaline earth metal The alkaline earth metals are six chemical elements in group 2 of the periodic table. They are beryllium (Be), magnesium (Mg), calcium (Ca), strontium (Sr), barium (Ba), and radium (Ra).. The elements have very similar properties: they are all ...
) are encapsulated in two different
polyhedra In geometry, a polyhedron (plural polyhedra or polyhedrons; ) is a three-dimensional shape with flat polygonal faces, straight edges and sharp corners or vertices. A convex polyhedron is the convex hull of finitely many points, not all on ...
facing each other. The differences between types I and II come from the number and size of voids present in their
unit cell In geometry, biology, mineralogy and solid state physics, a unit cell is a repeating unit formed by the vectors spanning the points of a lattice. Despite its suggestive name, the unit cell (unlike a unit vector, for example) does not necessaril ...
s. Transport properties depend on the framework's properties, but tuning is possible by changing the “guest” atoms. The most direct approach to synthesize and optimize the thermoelectric properties of semiconducting type I clathrates is substitutional doping, where some framework atoms are replaced with dopant atoms. In addition, powder metallurgical and crystal growth techniques have been used in clathrate synthesis. The structural and chemical properties of clathrates enable the optimization of their transport properties as a function of
stoichiometry Stoichiometry refers to the relationship between the quantities of reactants and products before, during, and following chemical reactions. Stoichiometry is founded on the law of conservation of mass where the total mass of the reactants equ ...
. The structure of type II materials allows a partial filling of the polyhedra, enabling better tuning of the electrical properties and therefore better control of the doping level. Partially filled variants can be synthesized as semiconducting or even insulating. Blake ''et al.'' have predicted ZT~0.5 at room temperature and ZT~1.7 at 800 K for optimized compositions. Kuznetsov ''et al.'' measured electrical resistance and Seebeck coefficient for three different type I clathrates above room temperature and by estimating high temperature thermal conductivity from the published low temperature data they obtained ZT~0.7 at 700 K for Ba8Ga16Ge30 and ZT~0.87 at 870 K for Ba8Ga16Si30.


Compounds of Mg and group-14 element

Mg2BIV (B14=Si, Ge, Sn) compounds and their solid solutions are good thermoelectric materials and their ZT values are comparable with those of established materials. The appropriate production methods are based on direct co-melting, but mechanical alloying has also been used. During synthesis, magnesium losses due to evaporation and segregation of components (especially for Mg2Sn) need to be taken into account. Directed crystallization methods can produce single crystals of Mg2Si, but they intrinsically have n-type conductivity, and doping, e.g. with Sn, Ga, Ag or Li, is required to produce p-type material which is required for an efficient thermoelectric device. Solid solutions and doped compounds have to be annealed in order to produce homogeneous samples – with the same properties throughout. At 800 K, Mg2Si0.55−xSn0.4Ge0.05Bix has been reported to have a figure of merit about 1.4, the highest ever reported for these compounds.


Skutterudite thermoelectrics

Skutterudites have a chemical composition of LM4X12, where L is a
rare-earth metal The rare-earth elements (REE), also called the rare-earth metals or (in context) rare-earth oxides or sometimes the lanthanides (yttrium and scandium are usually included as rare earths), are a set of 17 nearly-indistinguishable lustrous silv ...
(optional component), M is a
transition metal In chemistry, a transition metal (or transition element) is a chemical element in the d-block of the periodic table (groups 3 to 12), though the elements of group 12 (and less often group 3) are sometimes excluded. They are the elements that can ...
, and X is a
metalloid A metalloid is a type of chemical element which has a preponderance of properties in between, or that are a mixture of, those of metals and nonmetals. There is no standard definition of a metalloid and no complete agreement on which elements are ...
, a group V element or a pnictogen such as
phosphorus Phosphorus is a chemical element with the symbol P and atomic number 15. Elemental phosphorus exists in two major forms, white phosphorus and red phosphorus, but because it is highly reactive, phosphorus is never found as a free element on Ea ...
,
antimony Antimony is a chemical element with the symbol Sb (from la, stibium) and atomic number 51. A lustrous gray metalloid, it is found in nature mainly as the sulfide mineral stibnite (Sb2S3). Antimony compounds have been known since ancient ti ...
, or
arsenic Arsenic is a chemical element with the symbol As and atomic number 33. Arsenic occurs in many minerals, usually in combination with sulfur and metals, but also as a pure elemental crystal. Arsenic is a metalloid. It has various allotropes, b ...
. These materials exhibit ZT>1.0 and can potentially be used in multistage thermoelectric devices. Unfilled, these materials contain voids, which can be filled with low-coordination ions (usually rare-earth elements) to reduce thermal conductivity by producing sources for lattice phonon scattering, without reducing
electrical conductivity Electrical resistivity (also called specific electrical resistance or volume resistivity) is a fundamental property of a material that measures how strongly it resists electric current. A low resistivity indicates a material that readily allows ...
. It is also possible to reduce the thermal conductivity in skutterudite without filling these voids using a special architecture containing nano- and micro-pores.
NASA The National Aeronautics and Space Administration (NASA ) is an independent agency of the US federal government responsible for the civil space program, aeronautics research, and space research. NASA was established in 1958, succeedin ...
is developing a
Multi-Mission Radioisotope Thermoelectric Generator The multi-mission radioisotope thermoelectric generator (MMRTG) is a type of radioisotope thermoelectric generator (RTG) developed for NASA space missions such as the Mars Science Laboratory (MSL), under the jurisdiction of the United States Depa ...
in which the thermocouples would be made of skutterudite, which can function with a smaller temperature difference than the current
tellurium Tellurium is a chemical element with the symbol Te and atomic number 52. It is a brittle, mildly toxic, rare, silver-white metalloid. Tellurium is chemically related to selenium and sulfur, all three of which are chalcogens. It is occasionall ...
designs. This would mean that an otherwise similar RTG would generate 25% more power at the beginning of a mission and at least 50% more after seventeen years. NASA hopes to use the design on the next New Frontiers mission.


Oxide thermoelectrics

Homologous
oxide An oxide () is a chemical compound that contains at least one oxygen atom and one other element in its chemical formula. "Oxide" itself is the dianion of oxygen, an O2– (molecular) ion. with oxygen in the oxidation state of −2. Most of the E ...
compounds (such as those of the form ()n—the
Ruddlesden-Popper phase Ruddlesden-Popper (RP) phases are a type of perovskite structure that consists of two-dimensional perovskite-like slabs interleaved with cations. The general formula of an RP phase is ''An+1BnX3n+1'', where ''A'' and ''B'' are cations, ''X'' is a ...
) have layered superlattice structures that make them promising candidates for use in high-temperature thermoelectric devices. These materials exhibit low thermal conductivity perpendicular to the layers while maintaining good electronic conductivity within the layers. Their ZT values can reach 2.4 for epitaxial films, and the enhanced thermal stability of such oxides, as compared to conventional high-ZT
bismuth Bismuth is a chemical element with the symbol Bi and atomic number 83. It is a post-transition metal and one of the pnictogens, with chemical properties resembling its lighter group 15 siblings arsenic and antimony. Elemental bismuth occurs ...
compounds, makes them superior high-temperature thermoelectrics. Interest in oxides as thermoelectric materials was reawakened in 1997 when a relatively high thermoelectric power was reported for NaCo2O4. In addition to their thermal stability, other advantages of oxides are their low toxicity and high oxidation resistance. Simultaneously controlling both the electric and phonon systems may require nanostructured materials. Layered Ca3Co4O9 exhibited ZT values of 1.4–2.7 at 900 K. If the layers in a given material have the same stoichiometry, they will be stacked so that the same atoms will not be positioned on top of each other, impeding
phonon In physics, a phonon is a collective excitation in a periodic, elastic arrangement of atoms or molecules in condensed matter, specifically in solids and some liquids. A type of quasiparticle, a phonon is an excited state in the quantum mechani ...
conductivity perpendicular to the layers. Recently, oxide thermoelectrics have gained a lot of attention so that the range of promising phases increased drastically. Novel members of this family include ZnO, MnO2, and NbO2.


Cation-substituted copper sulfide thermoelectrics

All variables mentioned are included in the equation for the dimensionless figure of merit, ''zT'', which can be seen at the top of this page. The goal of any thermoelectric experiment is to make the power factor, ''S2 σ'', larger while maintaining a small
thermal conductivity The thermal conductivity of a material is a measure of its ability to conduct heat. It is commonly denoted by k, \lambda, or \kappa. Heat transfer occurs at a lower rate in materials of low thermal conductivity than in materials of high thermal ...
. This is because electricity is produced through a temperature gradient, so materials that can equilibrate heat very quickly are not useful. The two compounds detailed below were found to exhibit high-performing thermoelectric properties, which can be evidenced by the reported figure of merit in either respective manuscript. Cuprokalininite (CuCr2S4) is a copper-dominant analogue of the mineral joegoldsteinite. It was recently found within metamorphic rocks in Slyudyanka, part of the South Baikal region of Russia, and researchers have determined that Sb- doped cuprokalininite (Cu1-xSbxCr2S4) shows promise in renewable technology. Doping is the act of intentionally adding an impurity, usually to modify the electrochemical characteristics of the seed material. The introduction of
antimony Antimony is a chemical element with the symbol Sb (from la, stibium) and atomic number 51. A lustrous gray metalloid, it is found in nature mainly as the sulfide mineral stibnite (Sb2S3). Antimony compounds have been known since ancient ti ...
enhances the power factor by bringing in extra electrons, which increases the Seebeck coefficient, ''S'', and reduces the
magnetic moment In electromagnetism, the magnetic moment is the magnetic strength and orientation of a magnet or other object that produces a magnetic field. Examples of objects that have magnetic moments include loops of electric current (such as electroma ...
(how likely the particles are to align with a magnetic field); it also distorts the crystal structure, which lowers the
thermal conductivity The thermal conductivity of a material is a measure of its ability to conduct heat. It is commonly denoted by k, \lambda, or \kappa. Heat transfer occurs at a lower rate in materials of low thermal conductivity than in materials of high thermal ...
, ''κ''. Khan ''et al.'' (2017) were able to discover the optimal amount of Sb content (x=0.3) in cuprokalininte in order to develop a device with a ZT value of 0.43.
Bornite Bornite, also known as peacock ore, is a sulfide mineral with chemical composition Cu5 Fe S4 that crystallizes in the orthorhombic system (pseudo-cubic). Appearance Bornite has a brown to copper-red color on fresh surfaces that tarnishes to v ...
(Cu5FeS4) is a sulfide mineral named after an Austrian mineralogist, though it is much more common than the aforementioned cuprokalininite. This metal ore was found to demonstrate an improved thermoelectric performance after undering cation exchange with iron. Cation exchange is the process of surrounding a parent crystal with an
electrolyte An electrolyte is a medium containing ions that is electrically conducting through the movement of those ions, but not conducting electrons. This includes most soluble salts, acids, and bases dissolved in a polar solvent, such as water. Upon ...
complex, so that the cations (positively charged ions) within the structure can be swapped out for those in solution without affecting the
anion An ion () is an atom or molecule with a net electrical charge. The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by conve ...
sublattice (negatively charged crystal network). What one is left with are crystals that possess a different composition, yet an identical framework. In this way, scientists are granted extreme morphological control and uniformity when generating complicated heterostructures. As to why it was thought to improve the ZT value, the mechanics of cation exchange often bring about crystallographic defects, which cause phonons (simply put, heat particles) to scatter. According to the Debye-Callaway formalism, a model used to determine the lattice thermal conductivity, ''κL'', the highly anharmonic behavior due to phonon scattering results in a large thermal resistance. Therefore, a greater defect density decreases the lattice thermal conductivity, thereby making a larger figure of merit. In conclusion, Long ''et al.'' reported that greater Cu-deficiencies resulted in increases of up to 88% in the ZT value, with a maximum of 0.79. The composition of thermoelectric devices can dramatically vary depending on the temperature of the heat they must harvest; considering the fact that more than eighty percent of industry waste falls within a range of 373-575 K, chalcogenides and
antimonides Antimonides (sometimes called stibnides) are compounds of antimony with more electropositive elements. The antimonide ion is Sb3−. Reduction of antimony by alkali metals or by other methods leads to alkali metal antimonides of various types. ...
are better suited for thermoelectric conversion because they can utilize heat at lower temperatures. Not only is sulfur the cheapest and lightest chalcogenide, current surpluses may be causing threat to the environment since it is a byproduct of oil capture, so sulfur consumption could help mitigate future damage. As for the metal, copper is an ideal seed particle for any kind of substitution method because of its high mobility and variable
oxidation state In chemistry, the oxidation state, or oxidation number, is the hypothetical charge of an atom if all of its bonds to different atoms were fully ionic. It describes the degree of oxidation (loss of electrons) of an atom in a chemical compound. C ...
, for it can balance or complement the charge of more inflexible cations. Therefore, either the cuprokalininite or bornite minerals could prove ideal thermoelectric components.


Half-Heusler alloys

Half-Heusler (HH) alloys have a great potential for high-temperature power generation applications. Examples of these alloys include NbFeSb, NbCoSn and VFeSb. They have a cubic MgAgAs-type structure formed by three interpenetrating face-centered-cubic (fcc) lattices. The ability to substitute any of these three sublattices opens the door for wide variety of compounds to be synthesized. Various atomic substitutions are employed to reduce the thermal conductivity and enhance the electrical conductivity. Previously, ZT could not peak more than 0.5 for p-type and 0.8 for n-type HH compound. However, in the past few years, researchers were able to achieve ZT≈1 for both n-type and p-type. Nano-sized grains is one of the approaches used to lower the thermal conductivity via grain boundaries- assisted phonon scattering. Other approach was to utilize the principles of nanocomposites, by which certain combination of metals were favored on others due to the atomic size difference. For instance, Hf and Ti is more effective than Hf and Zr, when reduction of thermal conductivity is of concern, since the atomic size difference between the former is larger than that of the latter.


Flexible Thermoelectric Materials

Electrically conducting organic materials Conducting polymers are of significant interest for flexible thermoelectric development. They are flexible, lightweight, geometrically versatile, and can be processed at scale, an important component for commercialization. However, the structural disorder of these materials often inhibits the electrical conductivity much more than the thermal conductivity, limiting their use so far. Some of the most common conducting polymers investigated for flexible thermoelectrics include poly(3,4-ethylenedioxythiophene) (PEDOT), polyanilines (PANIs), polythiophenes, polyacetylenes, polypyrrole, and polycarbazole. P-type PEDOT:PSS (polystyrene sulfonate) and PEDOT-Tos (Tosylate) have been some of the most encouraging materials investigated. Organic, air-stable n-type thermoelectrics are often harder to synthesize because of their low electron affinity and likelihood of reacting with oxygen and water in the air. These materials often have a figure of merit that is still too low for commercial applications (~0.42 in PEDOT:PSS) due to the poor electrical conductivity. Hybrid Composites Hybrid composite thermoelectrics involve blending the previously discussed electrically conducting organic materials or other composite materials with other conductive materials in an effort to improve transport properties. The conductive materials that are most commonly added include carbon nanotubes and graphene due to their conductivities and mechanical properties. It has been shown that carbon nanotubes can increase the tensile strength of the polymer composite they are blended with. However, they can also reduce the flexibility. Furthermore, future study into the orientation and alignment of these added materials will allow for improved performance. The percolation threshold of CNT’s is often especially low, well below 10%, due to their high aspect ratio. A low percolation threshold is desirable for both cost and flexibility purposes. Reduced graphene oxide (rGO) as graphene-related material was also used to enhance figure of merit of thermoelectric materials. The addition of rather low amount of graphene or rGO around 1 wt% mainly strengthens the phonon scattering at grain boundaries of all these materials as well as increases the charge carrier concentration and mobility in chalcogenide-, skutterudite- and, particularly, metal oxide-based composites. However, significant growth of ZT after addition of graphene or rGO was observed mainly for composites based on thermoelectric materials with low initial ZT. When thermoelectric material is already nanostructured and possesses high electrical conductivity, such an addition does not enhance ZT significantly. Thus, graphene or rGO-additive works mainly as an optimizer of the intrinsic performance of thermoelectric materials. Hybrid thermoelectric composites also refer to polymer-inorganic thermoelectric composites. This is generally achieved through an inert polymer matrix that is host to thermoelectric filler material. The matrix is generally nonconductive so as to not short current as well as to let the thermoelectric material dominate electrical transport properties. One major benefit of this method is that the polymer matrix will generally be highly disordered and random on many different length scales, meaning that the composite material will can have a much lower thermal conductivity. The general procedure to synthesize these materials involves a solvent to dissolve the polymer and dispersion of the thermoelectric material throughout the mixture.


Silicon-germanium alloys

Bulk Si exhibits a low ZT of ~0.01 because of its high thermal conductivity. However, ZT can be as high as 0.6 in silicon nanowires, which retain the high electrical conductivity of doped Si, but reduce the thermal conductivity due to elevated scattering of phonons on their extensive surfaces and low cross-section. Combining Si and Ge also allows to retain a high electrical conductivity of both components and reduce the thermal conductivity. The reduction originates from additional scattering due to very different lattice (phonon) properties of Si and Ge. As a result, Silicon-germanium alloys are currently the best thermoelectric materials around 1000 ℃ and are therefore used in some
radioisotope thermoelectric generator A radioisotope thermoelectric generator (RTG, RITEG), sometimes referred to as a radioisotope power system (RPS), is a type of nuclear battery that uses an array of thermocouples to convert the heat released by the decay of a suitable radioa ...
s (RTG) (notably the
MHW-RTG The Multihundred-Watt radioisotope thermoelectric generator (MHW RTG) is a type of US radioisotope thermoelectric generator (RTG) developed for the Voyager spacecraft, ''Voyager 1'' and ''Voyager 2''. Each RTG has a total weight of 37.7 kg ...
and
GPHS-RTG GPHS-RTG or general-purpose heat source — radioisotope thermoelectric generator, is a specific design of the radioisotope thermoelectric generator (RTG) used on US space missions. The GPHS-RTG was used on ''Ulysses'' (1), ''Galileo'' (2), ...
) and some other high^temperature applications, such as
waste heat recovery A waste heat recovery unit (WHRU) is an energy recovery heat exchanger that transfers heat from process outputs at high temperature to another part of the process for some purpose, usually increased efficiency. The WHRU is a tool involved in cogen ...
. Usability of silicon-germanium alloys is limited by their high price and moderate ZT values (~0.7); however, ZT can be increased to 1–2 in SiGe nanostructures owing to the reduction in thermal conductivity.


Sodium cobaltate

Experiments on crystals of sodium cobaltate, using
X-ray An X-ray, or, much less commonly, X-radiation, is a penetrating form of high-energy electromagnetic radiation. Most X-rays have a wavelength ranging from 10 picometers to 10  nanometers, corresponding to frequencies in the range 30&nb ...
and neutron scattering experiments carried out at the European Synchrotron Radiation Facility (ESRF) and the Institut Laue-Langevin (ILL) in Grenoble were able to suppress thermal conductivity by a factor of six compared to vacancy-free sodium cobaltate. The experiments agreed with corresponding density functional calculations. The technique involved large anharmonic displacements of contained within the crystals.


Amorphous materials

In 2002, Nolas and Goldsmid have come up with a suggestion that systems with the phonon mean free path larger than the charge carrier mean free path can exhibit an enhanced thermoelectric efficiency. This can be realized in amorphous thermoelectrics and soon they became a focus of many studies. This ground-breaking idea was accomplished in Cu-Ge-Te, NbO2, In-Ga-Zn-O, Zr-Ni-Sn, Si-Au, and Ti-Pb-V-O amorphous systems. It should be mentioned that modelling of transport properties is challenging enough without breaking the long-range order so that design of amorphous thermoelectrics is at its infancy. Naturally, amorphous thermoelectrics give rise to extensive phonon scattering, which is still a challenge for crystalline thermoelectrics. A bright future is expected for these materials.


Functionally graded materials

Functionally graded material In materials science Functionally Graded Materials (FGMs) may be characterized by the variation in composition and structure gradually over volume, resulting in corresponding changes in the properties of the material. The materials can be desig ...
s make it possible to improve the conversion efficiency of existing thermoelectrics. These materials have a non-uniform carrier concentration distribution and in some cases also solid solution composition. In power generation applications the temperature difference can be several hundred degrees and therefore devices made from homogeneous materials have some part that operates at the temperature where ZT is substantially lower than its maximum value. This problem can be solved by using materials whose transport properties vary along their length thus enabling substantial improvements to the operating efficiency over large temperature differences. This is possible with functionally graded materials as they have a variable carrier concentration along the length of the material, which is optimized for operations over specific temperature range.


Nanomaterials and superlattices

In addition to nanostructured / superlattice thin films, other nanostructured materials, including silicon nanowires, nanotubes and quantum dots show potential in improving thermoelectric properties.


PbTe/PbSeTe quantum dot superlattice

Another example of a superlattice involves a PbTe/PbSeTe
quantum dot Quantum dots (QDs) are semiconductor particles a few nanometres in size, having optical and electronic properties that differ from those of larger particles as a result of quantum mechanics. They are a central topic in nanotechnology. When the ...
superlattices provides an enhanced ZT (approximately 1.5 at room temperature) that was higher than the bulk ZT value for either PbTe or PbSeTe (approximately 0.5).


Nanocrystal stability and thermal conductivity

Not all nanocrystalline materials are stable, because the crystal size can grow at high temperatures, ruining the materials' desired characteristics. Nanocrystalline materials have many interfaces between crystals, which Physics of SASER scatter phonons so the thermal conductivity is reduced. Phonons are confined to the grain, if their mean free path is larger than the material grain size.


Nanocrystalline transition metal silicides

Nanocrystalline transition metal silicides are a promising material group for thermoelectric applications, because they fulfill several criteria that are demanded from the commercial applications point of view. In some nanocrystalline transition metal silicides the power factor is higher than in the corresponding polycrystalline material but the lack of reliable data on thermal conductivity prevents the evaluation of their thermoelectric efficiency.


Nanostructured skutterudites

Skutterudites, a cobalt arsenide
mineral In geology and mineralogy, a mineral or mineral species is, broadly speaking, a solid chemical compound with a fairly well-defined chemical composition and a specific crystal structure that occurs naturally in pure form.John P. Rafferty, ed. (2 ...
with variable amounts of nickel and iron, can be produced artificially, and are candidates for better thermoelectric materials. One advantage of nanostructured skutterudites over normal skutterudites is their reduced thermal conductivity, caused by grain boundary scattering. ZT values of ~0.65 and > 0.4 have been achieved with CoSb3 based samples; the former values were 2.0 for Ni and 0.75 for Te-doped material at 680 K and latter for Au-composite at . Even greater performance improvements can be achieved by using composites and by controlling the grain size, the compaction conditions of polycrystalline samples and the carrier concentration.


Graphene

Graphene is known for its high electrical conductivity and Seebeck coefficient at room temperature. However, from thermoelectric perspective, its thermal conductivity is notably high, which in turn limits its ZT. Several approaches were suggested to reduce the thermal conductivity of graphene without altering much its electrical conductivity. These include, but not limited to, the following: *Doping with carbon isotopes to form isotopic heterojunction such as that of 12C and 13C. Those isotopes possess different phonon frequency mismatch, which leads to the scattering of the heat carriers (phonons). This approach has been shown to affect neither the power factor nor the electrical conductivity. *Wrinkles and cracks in the graphene structure were shown to contribute to the reduction in the thermal conductivity. Reported values of thermal conductivity of suspended graphene of size 3.8 µm show a wide spread from 1500 to 5000 W/(m·K). A recent study attributed that to the microstructural defects present in graphene, such as wrinkles and cracks, which can drop the thermal conductivity by 27%. These defects help scatter phonons. *Introduction of defects with techniques such as oxygen plasma treatment. A more systemic way of introducing defects in graphene structure is done through O2 plasma treatment. Ultimately, the graphene sample will contain prescribed-holes spaced and numbered according to the plasma intensity. People were able to improve ZT of graphene from 1 to a value of 2.6 when the defect density is raised from 0.04 to 2.5 (this number is an index of defect density and usually understood when compared to the corresponding value of the un-treated graphene, 0.04 in our case). Nevertheless, this technique would lower the electrical conductivity as well, which can be kept unchanged if the plasma processing parameters are optimized. *Functionalization of graphene by oxygen. The thermal behavior of
graphene oxide An oxide () is a chemical compound that contains at least one oxygen atom and one other element in its chemical formula. "Oxide" itself is the dianion of oxygen, an O2– (molecular) ion. with oxygen in the oxidation state of −2. Most of ...
has not been investigated extensively as compared to its counterpart; graphene. However, it was shown theoretically by Density Functional Theory (DFT) model that adding oxygen into the lattice of graphene reduces a lot its thermal conductivity due to phonon scattering effect. Scattering of phonons result from both acoustic mismatch and reduced symmetry in graphene structure after doping with oxygen. The reduction of thermal conductivity can easily exceed 50% with this approach.


Superlattices and roughness

Superlattices – nano structured thermocouples, are considered a good candidate for better thermoelectric device manufacturing, with materials that can be used in manufacturing this structure. Their production is expensive for general-use due to fabrication processes based on expensive thin-film growth methods. However, since the amount of thin-film materials required for device fabrication with superlattices, is so much less than thin-film materials in bulk thermoelectric materials (almost by a factor of 1/10,000) the long-term cost advantage is indeed favorable. This is particularly true given the limited availability of tellurium causing competing solar applications for thermoelectric coupling systems to rise. Superlattice structures also allow the independent manipulation of transport parameters by adjusting the structure itself, enabling research for better understanding of the thermoelectric phenomena in nanoscale, and studying the phonon-blocking electron-transmitting structures – explaining the changes in electric field and conductivity due to the material's nano-structure. Many strategies exist to decrease the superlattice thermal conductivity that are based on engineering of phonon transport. The thermal conductivity along the film plane and wire axis can be reduced by creating diffuse interface scattering and by reducing the interface separation distance, both which are caused by interface roughness. Interface roughness can naturally occur or may be artificially induced. In nature, roughness is caused by the mixing of atoms of foreign elements. Artificial roughness can be created using various structure types, such as
quantum dot Quantum dots (QDs) are semiconductor particles a few nanometres in size, having optical and electronic properties that differ from those of larger particles as a result of quantum mechanics. They are a central topic in nanotechnology. When the ...
interfaces and thin-films on step-covered substrates.


= Problems in superlattices

= Reduced electrical conductivity:
Reduced phonon-scattering interface structures often also exhibit a decrease in electrical conductivity. The thermal conductivity in the cross-plane direction of the lattice is usually very low, but depending on the type of superlattice, the thermoelectric coefficient may increase because of changes to the band structure. Low thermal conductivity in superlattices is usually due to strong interface scattering of phonons. Minibands are caused by the lack of quantum confinement within a well. The mini-band structure depends on the superlattice period so that with a very short period (~1 nm) the band structure approaches the alloy limit and with a long period (≥ ~60 nm) minibands become so close to each other that they can be approximated with a continuum. Superlattice structure countermeasures:
Counter measures can be taken which practically eliminate the problem of decreased electrical conductivity in a reduced phonon-scattering interface. These measures include the proper choice of superlattice structure, taking advantage of mini-band conduction across superlattices, and avoiding quantum-confinement. It has been shown that because electrons and phonons have different wavelengths, it is possible to engineer the structure in such a way that phonons are scattered more diffusely at the interface than electrons. Phonon confinement countermeasures:
Another approach to overcome the decrease in electrical conductivity in reduced phonon-scattering structures is to increase phonon reflectivity and therefore decrease the thermal conductivity perpendicular to the interfaces. This can be achieved by increasing the mismatch between the materials in adjacent layers, including
density Density (volumetric mass density or specific mass) is the substance's mass per unit of volume. The symbol most often used for density is ''ρ'' (the lower case Greek letter rho), although the Latin letter ''D'' can also be used. Mathematicall ...
,
group velocity The group velocity of a wave is the velocity with which the overall envelope shape of the wave's amplitudes—known as the ''modulation'' or ''envelope'' of the wave—propagates through space. For example, if a stone is thrown into the middl ...
,
specific heat In thermodynamics, the specific heat capacity (symbol ) of a substance is the heat capacity of a sample of the substance divided by the mass of the sample, also sometimes referred to as massic heat capacity. Informally, it is the amount of heat t ...
, and the phonon-spectrum. Interface roughness causes diffuse phonon scattering, which either increases or decreases the phonon reflectivity at the interfaces. A mismatch between bulk dispersion relations confines phonons, and the confinement becomes more favorable as the difference in dispersion increases. The amount of confinement is currently unknown as only some models and experimental data exist. As with a previous method, the effects on the electrical conductivity have to be considered. Attempts to localize long-wavelength phonons by aperiodic superlattices or composite superlattices with different periodicities have been made. In addition, defects, especially dislocations, can be used to reduce thermal conductivity in low dimensional systems. Parasitic heat:
Parasitic heat conduction in the barrier layers could cause significant performance loss. It has been proposed but not tested that this can be overcome by choosing a certain correct distance between the quantum wells. The Seebeck coefficient can change its sign in superlattice nanowires due to the existence of minigaps as Fermi energy varies. This indicates that superlattices can be tailored to exhibit n or p-type behavior by using the same dopants as those that are used for corresponding bulk materials by carefully controlling Fermi energy or the dopant concentration. With nanowire arrays, it is possible to exploit semimetal-semiconductor transition due to the quantum confinement and use materials that normally would not be good thermoelectric materials in bulk form. Such elements are for example bismuth. The Seebeck effect could also be used to determine the carrier concentration and Fermi energy in nanowires. In quantum dot thermoelectrics, unconventional or nonband transport behavior (e.g. tunneling or hopping) is necessary to utilize their special electronic band structure in the transport direction. It is possible to achieve ZT>2 at elevated temperatures with quantum dot superlattices, but they are almost always unsuitable for mass production. However, in superlattices, where quantum-effects are not involved, with film thickness of only a few micrometers (µm) to about 15 µm, Bi2Te3/Sb2Te3 superlattice material has been made into high-performance microcoolers and other devices. The performance of hot-spot coolers are consistent with the reported ZT~2.4 of superlattice materials at 300 K. Nanocomposites are promising material class for bulk thermoelectric devices, but several challenges have to be overcome to make them suitable for practical applications. It is not well understood why the improved thermoelectric properties appear only in certain materials with specific fabrication processes. SrTe nanocrystals can be embedded in a bulk PbTe matrix so that rocksalt lattices of both materials are completely aligned (endotaxy) with optimal molar concentration for SrTe only 2%. This can cause strong phonon scattering but would not affect charge transport. In such case, ZT~1.7 can be achieved at 815 K for p-type material.


Tin selenide

In 2014, researchers at Northwestern University discovered that tin selenide (SnSe) has a ZT of 2.6 along the b axis of the unit cell. This was the highest value reported to date. This was attributed to an extremely low thermal conductivity found in the SnSe lattice. Specifically, SnSe demonstrated a lattice thermal conductivity of 0.23 W·m−1·K−1, much lower than previously reported values of 0.5 W·m−1·K−1 and greater. This material also exhibited a ZT of along the c-axis and along the a-axis. These results were obtained at a temperature of . As shown by the figures below, SnSe performance metrics were found to significantly improve at higher temperatures; this is due to a structural change. Power factor, conductivity, and thermal conductivity all reach their optimal values at or above 750 K, and appear to plateau at higher temperatures. However, other groups have not been able to reproduce the reported bulk thermal conductivity data. Although it exists at room temperature in an orthorhombic structure with space group Pnma, SnSe undergoes a transition to a structure with higher symmetry, space group Cmcm, at higher temperatures. This structure consists of Sn-Se planes that are stacked upwards in the a-direction, which accounts for the poor performance out-of-plane (along a-axis). Upon transitioning to the Cmcm structure, SnSe maintains its low thermal conductivity but exhibits higher carrier mobilities. One impediment to further development of SnSe is that it has a relatively low carrier concentration: approximately 1017 cm−3. Compounding this issue is the fact that SnSe has been reported to have low doping efficiency. However, such single crystalline materials suffer from inability to make useful devices due to their brittleness as well as narrow range of temperatures, where ZT is reported to be high. In 2021 the researchers announced a polycrystalline form of SnSe that was at once less brittle and featured a ZT of 3.1.


Production methods

Production methods for these materials can be divided into powder and crystal growth based techniques. Powder based techniques offer excellent ability to control and maintain desired carrier distribution, particle size, and composition. In crystal growth techniques dopants are often mixed with melt, but diffusion from gaseous phase can also be used. In the zone melting techniques disks of different materials are stacked on top of others and then materials are mixed with each other when a traveling heater causes melting. In powder techniques, either different powders are mixed with a varying ratio before melting or they are in different layers as a stack before pressing and melting. There are applications, such as cooling of electronic circuits, where thin films are required. Therefore, thermoelectric materials can also be synthesized using physical vapor deposition techniques. Another reason to utilize these methods is to design these phases and provide guidance for bulk applications.


3D Printing

Significant improvement on 3D printing skills has made it possible for thermoelectric components to be prepared via 3D printing. Thermoelectric products are made from special materials that absorb heat and create electricity. The requirement of fitting complex geometries in tightly constrained spaces makes 3D printing the ideal manufacturing technique. There are several benefits to the use of additive manufacturing in thermoelectric material production. Additive manufacturing allows for innovation in the design of these materials, facilitating intricate geometries that would not otherwise be possible by conventional manufacturing processes. It reduces the amount of wasted material during production and allows for faster production turnaround times by eliminating the need for tooling and prototype fabrication, which can be time-consuming and expensive. There are several major additive manufacturing technologies that have emerged as feasible methods for the production of thermoelectric materials, including continuous inkjet printing, dispenser printing, screen printing, stereolithography, and selective laser sintering. Each method has its own challenges and limitations, especially related to the material class and form that can be used. For example, selective laser sintering (SLS) can be used with metal and ceramic powders, stereolithography (SLA) must be used with curable resins containing solid particle dispersions of the thermoelectric material of choice, and inkjet printing must use inks which are usually synthesized by dispersing inorganic powders to organic solvent or making a suspension. The motivation for producing thermoelectrics by means of additive manufacturing is due to a desire to improve the properties of these materials, namely increasing their thermoelectric figure of merit ZT, and thereby improving their
energy conversion efficiency Energy conversion efficiency (''η'') is the ratio between the useful output of an energy conversion machine and the input, in energy terms. The input, as well as the useful output may be chemical, electric power, mechanical work, light (rad ...
. Research has been done proving the efficacy and investigating the material properties of thermoelectric materials produced via additive manufacturing. An extrusion-based additive manufacturing method was used to successfully print bismuth telluride (Bi2Te3) with various geometries. This method utilized an all-inorganic viscoelastic ink synthesized using Sb2Te2 chalcogenidometallate ions as binders for Bi2Te3-based particles. The results of this method showed homogenous thermoelectric properties throughout the material and a thermoelectric figure of merit ZT of 0.9 for p-type samples and 0.6 for n-type samples. The Seebeck coefficient of this material was also found to increase with increasing temperature up to around 200 °C. Groundbreaking research has also been done towards the use of selective laser sintering (SLS) for the production of thermoelectric materials. Loose Bi2Te3 powders have been printed via SLS without the use of pre- or post-processing of the material, pre-forming of a substrate, or use of binder materials. The printed samples achieved 88% relative density (compared to a relative density of 92% in conventionally manufactured Bi2Te3). Scanning Electron Microscopy (SEM) imaging results showed adequate fusion between layers of deposited materials. Though pores existed within the melted region, this is a general existing issue with parts made by SLS, occurring as a result of gas bubbles that get trapped in the melted material during its rapid solidification. X-ray diffraction results showed that the crystal structure of the material was intact after laser melting. The Seebeck coefficient, figure of merit ZT, electrical and thermal conductivity, specific heat, and thermal diffusivity of the samples were also investigated, at high temperatures up to 500 °C. Of particular interest is the ZT of these Bi2Te3 samples, which were found to decrease with increasing temperatures up to around 300 °C, increase slightly at temperatures between 300-400 °C, and then increase sharply without further increase in temperature. The highest achieved ZT value (for an n-type sample) was about 0.11. The bulk thermoelectric material properties of samples produced using SLS had comparable thermoelectric and electrical properties to thermoelectric materials produced using conventional manufacturing methods. This the first time the SLS method of thermoelectric material production has been used successfully.


Applications


Refrigeration

Thermoelectric materials can be used as refrigerators, called "thermoelectric coolers", or "Peltier coolers" after the
Peltier effect The thermoelectric effect is the direct conversion of temperature differences to electric voltage and vice versa via a thermocouple. A thermoelectric device creates a voltage when there is a different temperature on each side. Conversely, when ...
that controls their operation. As a refrigeration technology, Peltier cooling is far less common than vapor-compression refrigeration. The main advantages of a Peltier cooler (compared to a vapor-compression refrigerator) are its lack of moving parts or
refrigerant A refrigerant is a working fluid used in the refrigeration cycle of air conditioning systems and heat pumps where in most cases they undergo a repeated phase transition from a liquid to a gas and back again. Refrigerants are heavily regulated ...
, and its small size and flexible shape (form factor). The main disadvantage of Peltier coolers is low efficiency. It is estimated that materials with ZT>3 (about 20–30% Carnot efficiency) would be required to replace traditional coolers in most applications. Today, Peltier coolers are only used in niche applications, especially small scale, where efficiency is not important.


Power generation

Thermoelectric efficiency depends on the ''figure of merit'', ZT. There is no theoretical upper limit to ZT, and as ZT approaches infinity, the thermoelectric efficiency approaches the Carnot limit. However, until recently no known thermoelectrics had a ZT>3. In 2019, researchers reported a material with ''approximated'' ZT between 5 and 6. As of 2010, thermoelectric generators serve application niches where efficiency and cost are less important than reliability, light weight, and small size. Internal combustion engines capture 20–25% of the energy released during fuel combustion. Increasing the conversion rate can increase mileage and provide more electricity for on-board controls and creature comforts (stability controls, telematics, navigation systems, electronic braking, etc.) It may be possible to shift energy draw from the engine (in certain cases) to the electrical load in the car, e.g., electrical power steering or electrical coolant pump operation.
Cogeneration Cogeneration or combined heat and power (CHP) is the use of a heat engine or power station to generate electricity and useful heat at the same time. Cogeneration is a more efficient use of fuel or heat, because otherwise- wasted heat from elec ...
power plants use the heat produced during electricity generation for alternative purposes; being this more profitable in industries with high amounts of waste energy. Thermoelectrics may find applications in such systems or in solar thermal energy generation.


See also

* Batteryless radio *
Pyroelectric effect Pyroelectricity (from the two Greek words ''pyr'' meaning fire, and electricity) is a property of certain crystals which are naturally electrically polarized and as a result contain large electric fields. Pyroelectricity can be described as the a ...
* Thermionic converter


References


Bibliography

*{{cite book, first=D.M. , last=Rowe, title=Thermoelectrics Handbook: Macro to Nano, date=2018-10-03, publisher=CRC Press, isbn=978-1-4200-3890-3


External links


TE Modules Application Tips and HintsThe Seebeck Coefficient
* ttps://phys.org/news/2019-11-material-world-electricity.html New material breaks world record for turning heat into electricity Thermoelectricity Materials science Energy conversion bg:Термоелектричество ca:Termoelectricitat de:Thermoelektrizität el:Θερμοηλεκτρισμός es:Termoelectricidad fr:Thermoélectricité it:Termoelettricità lt:Termoelektra pt:Termoeletricidade