Möbius strip
   HOME

TheInfoList



OR:

In
mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
, a Möbius strip, Möbius band, or Möbius loop is a surface that can be formed by attaching the ends of a strip of paper together with a half-twist. As a mathematical object, it was discovered by Johann Benedict Listing and August Ferdinand Möbius in 1858, but it had already appeared in
Roman Roman or Romans most often refers to: * Rome, the capital city of Italy * Ancient Rome, Roman civilization from 8th century BC to 5th century AD *Roman people, the people of ancient Rome *''Epistle to the Romans'', shortened to ''Romans'', a lett ...
mosaics from the third century CE. The Möbius strip is a
non-orientable In mathematics, orientability is a property of some topological spaces such as real vector spaces, Euclidean spaces, surfaces, and more generally manifolds that allows a consistent definition of "clockwise" and "counterclockwise". A space is ...
surface, meaning that within it one cannot consistently distinguish
clockwise Two-dimensional rotation can occur in two possible directions. Clockwise motion (abbreviated CW) proceeds in the same direction as a clock's hands: from the top to the right, then down and then to the left, and back up to the top. The opposite ...
from counterclockwise turns. Every non-orientable surface contains a Möbius strip. As an abstract
topological space In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance. More specifically, a topological space is a set whose elements are called poin ...
, the Möbius strip can be embedded into three-dimensional
Euclidean space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, that is, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are Euclidea ...
in many different ways: a clockwise half-twist is different from a counterclockwise half-twist, and it can also be embedded with odd numbers of twists greater than one, or with a knotted centerline. Any two embeddings with the same knot for the centerline and the same number and direction of twists are
topologically equivalent In mathematics, two functions are said to be topologically conjugate if there exists a homeomorphism that will conjugate the one into the other. Topological conjugacy, and related-but-distinct of flows, are important in the study of iterated fu ...
. All of these embeddings have only one side, but when embedded in other spaces, the Möbius strip may have two sides. It has only a single boundary curve. Several geometric constructions of the Möbius strip provide it with additional structure. It can be swept as a ruled surface by a line segment rotating in a rotating plane, with or without self-crossings. A thin paper strip with its ends joined to form a Möbius strip can bend smoothly as a developable surface or be folded flat; the flattened Möbius strips include the trihexaflexagon. The Sudanese Möbius strip is a minimal surface in a hypersphere, and the Meeks Möbius strip is a self-intersecting minimal surface in ordinary Euclidean space. Both the Sudanese Möbius strip and another self-intersecting Mobius strip, the cross-cap, have a circular boundary. A Möbius strip without its boundary, called an open Möbius strip, can form surfaces of constant curvature. Certain highly-symmetric spaces whose points represent lines in the plane have the shape of a Möbius strip. The many applications of Möbius strips include mechanical belts that wear evenly on both sides, dual-track roller coasters whose carriages alternate between the two tracks, and
world map A world map is a map of most or all of the surface of Earth. World maps, because of their scale, must deal with the problem of projection. Maps rendered in two dimensions by necessity distort the display of the three-dimensional surface of ...
s printed so that antipodes appear opposite each other. Möbius strips appear in molecules and devices with novel electrical and electromechanical properties, and have been used to prove impossibility results in
social choice theory Social choice theory or social choice is a theoretical framework for analysis of combining individual opinions, preferences, interests, or welfares to reach a ''collective decision'' or ''social welfare'' in some sense.Amartya Sen (2008). "Soci ...
. In popular culture, Möbius strips appear in artworks by
M. C. Escher Maurits Cornelis Escher (; 17 June 1898 – 27 March 1972) was a Dutch graphic artist who made mathematically inspired woodcuts, lithographs, and mezzotints. Despite wide popular interest, Escher was for most of his life neglected in t ...
,
Max Bill Max Bill (22 December 1908 – 9 December 1994) was a Swiss architect, artist, painter, typeface designer, industrial designer and graphic designer. Early life and education Bill was born in Winterthur. After an apprenticeship as a silversmit ...
, and others, and in the design of the
recycling symbol The universal recycling symbol ( or in Unicode) is internationally recognized for symbol for recycling activity. The symbol's creation originates on the first Earth Day in 1970, where the logo depicted is a Möbius strip. The public domain ...
. Many architectural concepts have been inspired by the Möbius strip, including the building design for the NASCAR Hall of Fame. Performers including
Harry Blackstone Sr. Harry Bouton Blackstone (born Henry Boughton; September 27, 1885 – November 16, 1965) was a famed stage magician and illusionist of the 20th century. Blackstone was born Harry Bouton in Chicago, Illinois. He began his career as a magician ...
and
Thomas Nelson Downs Thomas Nelson Downs (March 16, 1867 – September 11, 1938) was a manipulative magicians known for his coin tricks. Downs was also known as "The King of Koins". Magic historian David Price has written that Downs "was the first of the great m ...
have based stage magic tricks on the properties of the Möbius strip. The canons of J. S. Bach have been analyzed using Möbius strips. Many works of speculative fiction feature Möbius strips; more generally, a plot structure based on the Möbius strip, of events that repeat with a twist, is common in fiction.


History

The discovery of the Möbius strip as a mathematical object is attributed independently to the German mathematicians Johann Benedict Listing and August Ferdinand Möbius in However, it had been known long before, both as a physical object and in artistic depictions; in particular, it can be seen in several Roman mosaics from the In many cases these merely depict coiled ribbons as boundaries. When the number of coils is odd, these ribbons are Möbius strips, but for an even number of coils they are topologically equivalent to untwisted rings. Therefore, whether the ribbon is a Möbius strip may be coincidental, rather than a deliberate choice. In at least one case, a ribbon with different colors on different sides was drawn with an odd number of coils, forcing its artist to make a clumsy fix at the point where the colors did not Another mosaic from the town of Sentinum (depicted) shows the
zodiac The zodiac is a belt-shaped region of the sky that extends approximately 8° north or south (as measured in celestial latitude) of the ecliptic, the apparent path of the Sun across the celestial sphere over the course of the year. The pa ...
, held by the god Aion, as a band with only a single twist. There is no clear evidence that the one-sidedness of this visual representation of celestial time was intentional; it could have been chosen merely as a way to make all of the signs of the zodiac appear on the visible side of the strip. Some other ancient depictions of the ourobouros or of figure-eight-shaped decorations are also alleged to depict Möbius strips, but whether they were intended to depict flat strips of any type is Independently of the mathematical tradition, machinists have long known that mechanical belts wear half as quickly when they form Möbius strips, because they use the entire surface of the belt rather than only the inner surface of an untwisted belt. Additionally, such a belt may be less prone to curling from side to side. An early written description of this technique dates to 1871, which is after the first mathematical publications regarding the Möbius strip. Much earlier, an image of a chain pump in a work of Ismail al-Jazari from 1206 depicts a Möbius strip configuration for its drive Another use of this surface was made by seamstresses in Paris (at an unspecified date): they initiated novices by requiring them to stitch a Möbius strip as a collar onto a


Properties

The Möbius strip has several curious properties. It is a non-orientable surface: if an asymmetric two-dimensional object slides one time around the strip, it returns to its starting position as its mirror image. In particular, a curved arrow pointing clockwise (↻) would return as an arrow pointing counterclockwise (↺), implying that, within the Möbius strip, it is impossible to consistently define what it means to be clockwise or counterclockwise. It is the simplest non-orientable surface: any other surface is non-orientable if and only if it has a Möbius strip as a Relatedly, when embedded into
Euclidean space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, that is, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are Euclidea ...
, the Möbius strip has only one side. A three-dimensional object that slides one time around the surface of the strip is not mirrored, but instead returns to the same point of the strip on what appears locally to be its other side, showing that both positions are really part of a single side. This behavior is different from familiar orientable surfaces in three dimensions such as those modeled by flat sheets of paper, cylindrical drinking straws, or hollow balls, for which one side of the surface is not connected to the other. However, this is a property of its embedding into space rather than an intrinsic property of the Möbius strip itself: there exist other topological spaces in which the Möbius strip can be embedded so that it has two For instance, if the front and back faces of a cube are glued to each other with a left-right mirror reflection, the result is a three-dimensional topological space (the Cartesian product of a Möbius strip with an interval) in which the top and bottom halves of the cube can be separated from each other by a two-sided Möbius In contrast to disks, spheres, and cylinders, for which it is possible to simultaneously embed an
uncountable set In mathematics, an uncountable set (or uncountably infinite set) is an infinite set that contains too many elements to be countable. The uncountability of a set is closely related to its cardinal number: a set is uncountable if its cardinal nu ...
of disjoint copies into three-dimensional space, only a countable number of Möbius strips can be simultaneously A path along the edge of a Möbius strip, traced until it returns to its starting point on the edge, includes all boundary points of the Möbius strip in a single continuous curve. For a Möbius strip formed by gluing and twisting a rectangle, it has twice the length of the centerline of the strip. In this sense, the Möbius strip is different from an untwisted ring and like a circular disk in having only one A Möbius strip in Euclidean space cannot be moved or stretched into its mirror image; it is a chiral object with right- or Möbius strips with odd numbers of half-twists greater than one, or that are knotted before gluing, are distinct as embedded subsets of three-dimensional space, even though they are all equivalent as two-dimensional topological More precisely, two Möbius strips are equivalently embedded in three-dimensional space when their centerlines determine the same knot and they have the same number of twists as each With an even number of twists, however, one obtains a different topological surface, called the The Möbius strip can be continuously transformed into its centerline, by making it narrower while fixing the points on the centerline. This transformation is an example of a
deformation retraction In topology, a branch of mathematics, a retraction is a continuous mapping from a topological space into a subspace that preserves the position of all points in that subspace. The subspace is then called a retract of the original space. A deforma ...
, and its existence means that the Möbius strip has many of the same properties as its centerline, which is topologically a circle. In particular, its fundamental group is the same as the fundamental group of a circle, an infinite cyclic group. Therefore, paths on the Möbius strip that start and end at the same point can be distinguished topologically (up to
homotopy In topology, a branch of mathematics, two continuous functions from one topological space to another are called homotopic (from grc, ὁμός "same, similar" and "place") if one can be "continuously deformed" into the other, such a deform ...
) only by the number of times they loop around the strip. Cutting a Möbius strip along the centerline with a pair of scissors yields one long strip with four half-twists in it (relative to an untwisted annulus or cylinder) rather than two separate strips. Two of the half-twists come from the fact that this thinner strip goes two times through the half-twist in the original Möbius strip, and the other two come from the way the two halves of the thinner strip wrap around each other. The result is not a Möbius strip, but instead is topologically equivalent to a cylinder. Cutting this double-twisted strip again along its centerline produces two linked double-twisted strips. If, instead, a Möbius strip is cut lengthwise, a third of the way across its width, it produces two linked strips. One of the two is a central, thinner, Möbius strip, while the other has two These interlinked shapes, formed by lengthwise slices of Möbius strips with varying widths, are sometimes called ''paradromic'' The Möbius strip can be cut into six mutually-adjacent regions, showing that maps on the surface of the Möbius strip can sometimes require six colors, in contrast to the four color theorem for the Six colors are always enough. This result is part of the Ringel–Youngs theorem, which states how many colors each topological surface The edges and vertices of these six regions form
Tietze's graph In the mathematical field of graph theory, Tietze's graph is an undirected cubic graph with 12 vertices and 18 edges. It is named after Heinrich Franz Friedrich Tietze, who showed in 1910 that the Möbius strip can be subdivided into six regio ...
, which is a dual graph on this surface for the six-vertex complete graph but cannot be drawn without crossings on a plane. Another family of graphs that can be embedded on the Möbius strip, but not n the plane, are the Möbius ladders, the boundaries of subdivisions of the Möbius strip into rectangles meeting These include the utility graph, a six-vertex complete bipartite graph whose embedding into the Möbius strip shows that, unlike in the plane, the three utilities problem can be solved on a transparent Möbius The Euler characteristic of the Möbius strip is zero, meaning that for any subdivision of the strip by vertices and edges into regions, the numbers V, E, and F of vertices, edges, and regions satisfy V-E+F=0. For instance, Tietze's graph has 12 vertices, 18 edges, and 6 regions;


Constructions

There are many different ways of defining geometric surfaces with the topology of the Möbius strip, yielding realizations with additional geometric properties.


Sweeping a line segment

One way to embed the Möbius strip in three-dimensional Euclidean space is to sweep it out by a line segment rotating in a plane, which in turn rotates around one of its For the swept surface to meet up with itself after a half-twist, the line segment should rotate around its center at half the angular velocity of the plane's rotation. This can be described as a
parametric surface A parametric surface is a surface in the Euclidean space \R^3 which is defined by a parametric equation with two parameters Parametric representation is a very general way to specify a surface, as well as implicit representation. Surfaces that occ ...
defined by equations for the Cartesian coordinates of its points, \begin x(u,v)&= \left(1+\frac \cos \frac\right)\cos u\\ y(u,v)&= \left(1+\frac \cos\frac\right)\sin u\\ z(u,v)&= \frac\sin \frac\\ \end for 0 \le u< 2\pi and where one parameter u describes the rotation angle of the plane around its central axis and the other parameter describes the position of a point along the rotating line segment. This produces a Möbius strip of width 1, whose center circle has radius 1, lies in the xy-plane and is centered at The same method can produce Möbius strips with any odd number of half-twists, by rotating the segment more quickly in its plane. The rotating segment sweeps out a circular disk in the plane that it rotates within, and the Möbius strip that it generates forms a slice through the solid torus swept out by this disk. Because of the one-sidedness of this slice, the sliced torus remains A line or line segment swept in a different motion, rotating in a horizontal plane around the origin as it moves up and down, forms
Plücker's conoid In geometry, Plücker's conoid is a ruled surface named after the German mathematician Julius Plücker. It is also called a conical wedge or cylindroid; however, the latter name is ambiguous, as "cylindroid" may also refer to an elliptic cylinde ...
or cylindroid, an algebraic ruled surface in the form of a self-crossing Möbius It has applications in the design of


Polyhedral surfaces and flat foldings

A strip of paper can form a flattened Möbius strip in the plane by folding it at 60^\circ angles so that its center line lies along an equilateral triangle, and attaching the ends. The shortest strip for which this is possible consists of three equilateral triangles, folded at the edges where two triangles meet. Its aspect ratiothe ratio of the strip's length to its widthis and the same folding method works for any larger aspect For a strip of nine equilateral triangles, the result is a trihexaflexagon, which can be flexed to reveal different parts of its For strips too short to apply this method directly, one can first "accordion fold" the strip in its wide direction back and forth using an even number of folds. With two folds, for example, a 1\times 1 strip would become a 1\times \tfrac folded strip whose cross section is in the shape of an 'N' and would remain an 'N' after a half-twist. The narrower accordion-folded strip can then be folded and joined in the same way that a longer strip The Möbius strip can also be embedded as a polyhedral surface in space or flat-folded in the plane, with only five triangular faces sharing five vertices. In this sense, it is simpler than the
cylinder A cylinder (from ) has traditionally been a three-dimensional solid, one of the most basic of curvilinear geometric shapes. In elementary geometry, it is considered a prism with a circle as its base. A cylinder may also be defined as an ...
, which requires six triangles and six vertices, even when represented more abstractly as a simplicial complex. A five-triangle Möbius strip can be represented most symmetrically by five of the ten equilateral triangles of a four-dimensional regular simplex. This four-dimensional polyhedral Möbius strip is the only ''tight'' Möbius strip, one that is fully four-dimensional and for which all cuts by hyperplanes separate it into two parts that are topologically equivalent to disks or Other polyhedral embeddings of Möbius strips include one with four convex quadrilaterals as faces, another with three non-convex quadrilateral and one using the vertices and center point of a regular octahedron, with a triangular Every abstract triangulation of the projective plane can be embedded into 3D as a polyhedral Möbius strip with a triangular boundary after removing one of its an example is the six-vertex projective plane obtained by adding one vertex to the five-vertex Möbius strip, connected by triangles to each of its boundary However, not every abstract triangulation of the Möbius strip can be represented geometrically, as a polyhedral To be realizable, it is necessary and sufficient that there be no two disjoint non-contractible 3-cycles in the


Smoothly embedded rectangles

A rectangular Möbius strip, made by attaching the ends of a paper rectangle, can be embedded smoothly into three-dimensional space whenever its aspect ratio is greater than the same ratio as for the flat-folded equilateral-triangle version of the Möbius This flat triangular embedding can lift to a smooth embedding in three dimensions, in which the strip lies flat in three parallel planes between three cylindrical rollers, each tangent to two of the Mathematically, a smoothly embedded sheet of paper can be modeled as a developable surface, that can bend but cannot As its aspect ratio decreases toward \sqrt 3, all smooth embeddings seem to approach the same triangular The lengthwise folds of an accordion-folded flat Möbius strip prevent it from forming a three-dimensional embedding in which the layers are separated from each other and bend smoothly without crumpling or stretching away from the Instead, unlike in the flat-folded case, there is a lower limit to the aspect ratio of smooth rectangular Möbius strips. Their aspect ratio cannot be less than even if self-intersections are allowed. Self-intersecting smooth Möbius strips exist for any aspect ratio above this Without self-intersections, the aspect ratio must be at \frac\approx 1.695. For aspect ratios between this bound it is unknown whether smooth embeddings, without self-intersection, If the requirement of smoothness is relaxed to allow continuously differentiable surfaces, the Nash–Kuiper theorem implies that any two opposite edges of any rectangle can be glued to form an embedded Möbius strip, no matter how small the aspect ratio The limiting case, a surface obtained from an infinite strip of the plane between two parallel lines, glued with the opposite orientation to each other, is called the ''unbounded Möbius strip'' or the real tautological line bundle. Although it has no smooth embedding into three-dimensional space, it can be embedded smoothly into four-dimensional Euclidean The minimum-energy shape of a smooth Möbius strip glued from a rectangle does not have a known analytic description, but can be calculated numerically, and has been the subject of much study in
plate theory In continuum mechanics, plate theories are mathematical descriptions of the mechanics of flat plates that draws on the theory of beams. Plates are defined as plane structural elements with a small thickness compared to the planar dimensions. ...
since the initial work on this subject in 1930 by
Michael Sadowsky Michael A. Sadowsky (1902 – December 31, 1967) was a researcher in solid mechanics, particularly the mathematical theory of elasticity and materials science. Born in the Russian Empire, he earned his doctorate in 1927 under the applied mathem ...
. It is also possible to find algebraic surfaces that contain rectangular developable Möbius


Making the boundary circular

The edge, or boundary, of a Möbius strip is
topologically equivalent In mathematics, two functions are said to be topologically conjugate if there exists a homeomorphism that will conjugate the one into the other. Topological conjugacy, and related-but-distinct of flows, are important in the study of iterated fu ...
to a
circle A circle is a shape consisting of all points in a plane that are at a given distance from a given point, the centre. Equivalently, it is the curve traced out by a point that moves in a plane so that its distance from a given point is cons ...
. In common forms of the Möbius strip, it has a different shape from a circle, but it is unknotted, and therefore the whole strip can be stretched without crossing itself to make the edge perfectly One such example is based on the topology of the Klein bottle, a one-sided surface with no boundary that cannot be embedded into three-dimensional space, but can be immersed (allowing the surface to cross itself in certain restricted ways). A Klein bottle is the surface that results when two Möbius strips are glued together edge-to-edge, andreversing that processa Klein bottle can be sliced along a carefully chosen cut to produce two Möbius For a form of the Klein bottle known as Lawson's Klein bottle, the curve along which it is sliced can be made circular, resulting in Möbius strips with circular Lawson's Klein bottle is a self-crossing minimal surface in the unit hypersphere of 4-dimensional space, the set of points of the form (\cos\theta\cos\phi,\sin\theta\cos\phi,\cos2\theta\sin\phi,\sin2\theta\sin \phi) for Half of this Klein bottle, the subset with 0\le\phi<\pi, gives a Möbius strip embedded in the hypersphere as a minimal surface with a great circle as its This embedding is sometimes called the "Sudanese Möbius strip" after topologists Sue Goodman and Daniel Asimov, who discovered it in the Geometrically Lawson's Klein bottle can be constructed by sweeping a great circle through a great-circular motion in the 3-sphere, and the Sudanese Möbius strip is obtained by sweeping a semicircle instead of a circle, or equivalently by slicing the Klein bottle along a circle that is perpendicular to all of the swept Stereographic projection transforms this shape from a three-dimensional spherical space into three-dimensional Euclidean space, preserving the circularity of its The most symmetric projection is obtained by using a projection point that lies on that great circle that runs through the midpoint of each of the semicircles, but produces an unbounded embedding with the projection point removed from its Instead, leaving the Sudanese Möbius strip unprojected, in the 3-sphere, leaves it with an infinite group of symmetries isomorphic to the orthogonal group the group of symmetries of a The Sudanese Möbius strip extends on all sides of its boundary circle, unavoidably if the surface is to avoid crossing itself. Another form of the Möbius strip, called the cross-cap or crosscap, also has a circular boundary, but otherwise stays on only one side of the plane of this making it more convenient for attaching onto circular holes in other surfaces. In order to do so, it crosses itself. It can be formed by removing a quadrilateral from the top of a hemisphere, orienting the edges of the quadrilateral in alternating directions, and then gluing opposite pairs of these edges consistently with this The two parts of the surface formed by the two glued pairs of edges cross each other with a pinch point like that of a
Whitney umbrella frame, Section of the surface In geometry, the Whitney umbrella (or Whitney's umbrella, named after American mathematician Hassler Whitney, and sometimes called a Cayley umbrella) is a specific self-intersecting ruled surface placed in three d ...
at each end of the crossing the same topological structure seen in Plücker's


Surfaces of constant curvature

The open Möbius strip is the
relative interior In mathematics, the relative interior of a set is a refinement of the concept of the interior, which is often more useful when dealing with low-dimensional sets placed in higher-dimensional spaces. Formally, the relative interior of a set S (den ...
of a standard Möbius strip, formed by omitting the points on its boundary edge. It may be given a Riemannian geometry of constant positive, negative, or zero Gaussian curvature. The cases of negative and zero curvature form geodesically complete surfaces, which means that all geodesics ("straight lines" on the surface) may be extended indefinitely in either direction. ;Zero curvature :An open strip with zero curvature may be constructed by gluing the opposite sides of a plane strip between two parallel lines, described above as the tautological line The resulting metric makes the open Möbius strip into a (geodesically) complete flat surface (i.e., having zero Gaussian curvature everywhere). This is the unique metric on the Möbius strip, up to uniform scaling, that is both flat and complete. It is the quotient space of a plane by a
glide reflection In 2-dimensional geometry, a glide reflection (or transflection) is a symmetry operation that consists of a reflection over a line and then translation along that line, combined into a single operation. The intermediate step between reflecti ...
, and (together with the plane,
cylinder A cylinder (from ) has traditionally been a three-dimensional solid, one of the most basic of curvilinear geometric shapes. In elementary geometry, it is considered a prism with a circle as its base. A cylinder may also be defined as an ...
,
torus In geometry, a torus (plural tori, colloquially donut or doughnut) is a surface of revolution generated by revolving a circle in three-dimensional space about an axis that is coplanar with the circle. If the axis of revolution does n ...
, and Klein bottle) is one of only five two-dimensional complete ;Negative curvature :The open Möbius strip also admits complete metric of constant negative curvature. One way to see this is to begin with the upper half plane (Poincaré) model of the
hyperbolic plane In mathematics, hyperbolic geometry (also called Lobachevskian geometry or Bolyai– Lobachevskian geometry) is a non-Euclidean geometry. The parallel postulate of Euclidean geometry is replaced with: :For any given line ''R'' and point ' ...
, a geometry of constant curvature whose lines are represented in the model by semicircles that meet the x-axis at right angles. Take the subset of the upper half-plane between any two nested semicircles, and identify the outer semicircle with the left-right reversal of the inner semicircle. The result is topologically a complete and non-compact Möbius strip with constant negative curvature. It is a "nonstandard" complete hyperbolic surface in the sense that it contains a complete hyperbolic half-plane (actually two, on opposite sides of the axis of glide-reflection), and is one of only 13 nonstandard Again, this can be understood as the quotient of the hyperbolic plane by a glide ;Positive curvature :A Möbius strip of constant positive curvature cannot be complete, since it is known that the only complete surfaces of constant positive curvature are the sphere and the projective plane. However, in a sense it is only one point away from being a complete surface, as the open Möbius strip is homeomorphic to the once-punctured projective plane, the surface obtained by removing any one point from the projective The minimal surfaces are described as having constant zero mean curvature instead of constant Gaussian curvature. The Sudanese Möbius strip was constructed as a minimal surface bounded by a great circle in a 3-sphere, but there is also a unique complete (boundaryless) minimal surface immersed in Euclidean space that has the topology of an open Möbius strip. It is called the Meeks Möbius after its 1982 description by
William Hamilton Meeks, III William Hamilton Meeks III (born 8 August 1947 in Washington, DC) is an American mathematician, specializing in differential geometry and minimal surfaces. Meeks studied at the University of California, Berkeley, with bachelor's degree in 1971, m ...
. Although globally unstable as a minimal surface, small patches of it, bounded by non-contractible curves within the surface, can form stable embedded Möbius strips as minimal Both the Meeks Möbius strip, and every higher-dimensional minimal surface with the topology of the Möbius strip, can be constructed using solutions to the Björling problem, which defines a minimal surface uniquely from its boundary curve and tangent planes along this


Spaces of lines

The family of lines in the plane can be given the structure of a smooth space, with each line represented as a point in this space. The resulting space of lines is
topologically equivalent In mathematics, two functions are said to be topologically conjugate if there exists a homeomorphism that will conjugate the one into the other. Topological conjugacy, and related-but-distinct of flows, are important in the study of iterated fu ...
to the open Möbius One way to see this is to extend the Euclidean plane to the real projective plane by adding one more line, the line at infinity. By
projective duality In geometry, a striking feature of projective planes is the symmetry of the roles played by points and lines in the definitions and theorems, and (plane) duality is the formalization of this concept. There are two approaches to the subject of ...
the space of lines in the projective plane is equivalent to its space of points, the projective plane itself. Removing the line at infinity, to produce the space of Euclidean lines, punctures this space of projective Therefore, the space of Euclidean lines is a punctured projective plane, which is one of the forms of the open Möbius The space of lines in the
hyperbolic plane In mathematics, hyperbolic geometry (also called Lobachevskian geometry or Bolyai– Lobachevskian geometry) is a non-Euclidean geometry. The parallel postulate of Euclidean geometry is replaced with: :For any given line ''R'' and point ' ...
can be parameterized by unordered pairs of distinct points on a circle, the pairs of points at infinity of each line. This space, again, has the topology of an open Möbius These spaces of lines are highly symmetric. The symmetries of Euclidean lines include the affine transformations, and the symmetries of hyperbolic lines include the The affine transformations and Möbius transformations both form Lie groups, topological spaces having a compatible algebraic structure describing the composition of Because every line in the plane is symmetric to every other line, the open Möbius strip is a
homogeneous space In mathematics, particularly in the theories of Lie groups, algebraic groups and topological groups, a homogeneous space for a group ''G'' is a non-empty manifold or topological space ''X'' on which ''G'' acts transitively. The elements ...
, a space with symmetries that take every point to every other point. Homogeneous spaces of Lie groups are called solvmanifolds, and the Möbius strip can be used as a counterexample, showing that not every solvmanifold is a
nilmanifold In mathematics, a nilmanifold is a differentiable manifold which has a transitive nilpotent group of diffeomorphisms acting on it. As such, a nilmanifold is an example of a homogeneous space and is diffeomorphic to the quotient space N/H, the ...
, and that not every solvmanifold can be factored into a
direct product In mathematics, one can often define a direct product of objects already known, giving a new one. This generalizes the Cartesian product of the underlying sets, together with a suitably defined structure on the product set. More abstractly, one t ...
of a
compact Compact as used in politics may refer broadly to a pact or treaty; in more specific cases it may refer to: * Interstate compact * Blood compact, an ancient ritual of the Philippines * Compact government, a type of colonial rule utilized in Britis ...
solvmanifold These symmetries also provide another way to construct the Möbius strip itself, as a ''group model'' of these Lie groups. A group model consists of a Lie group and a
stabilizer subgroup In mathematics, a group action on a space is a group homomorphism of a given group into the group of transformations of the space. Similarly, a group action on a mathematical structure is a group homomorphism of a group into the automorphis ...
of its action; contracting the cosets of the subgroup to points produces a space with the same topology as the underlying homogenous space. In the case of the symmetries of Euclidean lines, the stabilizer of the consists of all symmetries that take the axis to itself. Each line \ell corresponds to a coset, the set of symmetries that map \ell to the Therefore, the quotient space, a space that has one point per coset and inherits its topology from the space of symmetries, is the same as the space of lines, and is again an open Möbius


Applications

Beyond the already-discussed applications of Möbius strips to the design of mechanical belts that wear evenly on their entire surface, and of the Plücker conoid to the design of gears, other applications of Möbius strips include: *
Graphene Graphene () is an allotrope of carbon consisting of a Single-layer materials, single layer of atoms arranged in a hexagonal lattice nanostructure.
ribbons twisted to form Möbius strips with new electronic characteristics including helical magnetism *
Möbius aromaticity In organic chemistry, Möbius aromaticity is a special type of aromaticity believed to exist in a number of organic molecules. In terms of molecular orbital theory these compounds have in common a monocyclic array of molecular orbitals in which th ...
, a property of
organic chemical In chemistry, organic compounds are generally any chemical compounds that contain carbon- hydrogen or carbon-carbon bonds. Due to carbon's ability to catenate (form chains with other carbon atoms), millions of organic compounds are known. T ...
s whose molecular structure forms a cycle, with
molecular orbital In chemistry, a molecular orbital is a mathematical function describing the location and wave-like behavior of an electron in a molecule. This function can be used to calculate chemical and physical properties such as the probability of find ...
s aligned along the cycle in the pattern of a Möbius strip *The Möbius resistor, a strip of conductive material covering the single side of a
dielectric In electromagnetism, a dielectric (or dielectric medium) is an electrical insulator that can be polarised by an applied electric field. When a dielectric material is placed in an electric field, electric charges do not flow through the ma ...
Möbius strip, in a way that cancels its own self-inductance * Resonators with a compact design and a resonant frequency that is half that of identically constructed linear coils * Polarization patterns in light emerging from a ''q''-plate *A proof of the impossibility of continuous, anonymous, and unanimous two-party aggregation rules in
social choice theory Social choice theory or social choice is a theoretical framework for analysis of combining individual opinions, preferences, interests, or welfares to reach a ''collective decision'' or ''social welfare'' in some sense.Amartya Sen (2008). "Soci ...
*
Möbius loop roller coaster A dual-tracked roller coaster is a roller coaster that consists of two tracks. They can be configured as racing, dueling, or Möbius loop roller coasters. Some dual-track coasters operate only one track side at a time, including Rolling Thunder ...
s, a form of dual-tracked roller coaster in which the two tracks spiral around each other an odd number of times, so that the carriages return to the other track than the one they started on *
World map A world map is a map of most or all of the surface of Earth. World maps, because of their scale, must deal with the problem of projection. Maps rendered in two dimensions by necessity distort the display of the three-dimensional surface of ...
s projected onto a Möbius strip with the convenient properties that there are no east–west boundaries, and that the antipode of any point on the map can be found on the other printed side of the surface at the same point of the Möbius strip Scientists have also studied the energetics of soap films shaped as Möbius strips, the
chemical synthesis As a topic of chemistry, chemical synthesis (or combination) is the artificial execution of chemical reactions to obtain one or several products. This occurs by physical and chemical manipulations usually involving one or more reactions. In mod ...
of
molecule A molecule is a group of two or more atoms held together by attractive forces known as chemical bonds; depending on context, the term may or may not include ions which satisfy this criterion. In quantum physics, organic chemistry, and b ...
s with a Möbius strip shape, and the formation of larger nanoscale Möbius strips using
DNA origami DNA origami is the nanoscale folding of DNA to create arbitrary two- and three-dimensional shapes at the nanoscale. The specificity of the interactions between complementary base pairs make DNA a useful construction material, through design of ...
.


In popular culture

Two-dimensional artworks featuring the Möbius strip include an untitled 1947 painting by
Corrado Cagli Corrado Cagli (1910–1976) was an Italian painter of Jewish heritage, who lived in the United States during World War II. Life Cagli was born in Ancona but he moved with his family to Rome in 1915 at the age of five. In 1927, he made his a ...
(memorialized in a poem by Charles Olson), and two prints by
M. C. Escher Maurits Cornelis Escher (; 17 June 1898 – 27 March 1972) was a Dutch graphic artist who made mathematically inspired woodcuts, lithographs, and mezzotints. Despite wide popular interest, Escher was for most of his life neglected in t ...
: ''Möbius Band I'' (1961), depicting three folded flatfish biting each others' tails; and ''Möbius Band II'' (1963), depicting ants crawling around a
lemniscate In algebraic geometry, a lemniscate is any of several figure-eight or -shaped curves. The word comes from the Latin "''lēmniscātus''" meaning "decorated with ribbons", from the Greek λημνίσκος meaning "ribbons",. or which alternative ...
-shaped Möbius strip. It is also a popular subject of mathematical sculpture, including works by
Max Bill Max Bill (22 December 1908 – 9 December 1994) was a Swiss architect, artist, painter, typeface designer, industrial designer and graphic designer. Early life and education Bill was born in Winterthur. After an apprenticeship as a silversmit ...
(''Endless Ribbon'', 1953),
José de Rivera José Ruiz de Rivera (September 18, 1904 March 12, 1985) was an American abstract sculptor. Life and career José Ruiz de Rivera was born in Baton Rouge, Louisiana and grew up in New Orleans. He dropped out of high school, but finished at a board ...
('' Infinity'', 1967), and Sebastián. A trefoil-knotted Möbius strip was used in
John Robinson John Robinson may refer to: Academics *John Thomas Romney Robinson (1792–1882), Irish astronomer and physicist * John J. Robinson (1918–1996), historian and author of ''Born in Blood'' * John Talbot Robinson (1923–2001), paleontologist *Joh ...
s ''Immortality'' (1982). Charles O. Perry's '' Continuum'' (1976) is one of several pieces by Perry exploring variations of the Möbius strip. Because of their easily recognized form, Möbius strips are a common element of graphic design. The familiar three-arrow logo for
recycling Recycling is the process of converting waste materials into new materials and objects. The Energy recycling, recovery of energy from waste materials is often included in this concept. The recyclability of a material depends on its ability t ...
, designed in 1970, is based on the smooth triangular form of the Möbius as was the logo for the environmentally-themed Expo '74. Some variations of the recycling symbol use a different embedding with three half-twists instead of and the original version of the Google Drive logo used a flat-folded three-twist Möbius strip, as have other similar designs. The Brazilian Instituto Nacional de Matemática Pura e Aplicada (IMPA) uses a stylized smooth Möbius strip as their logo, and has a matching large sculpture of a Möbius strip on display in their building. The Möbius strip has also featured in the artwork for
postage stamp A postage stamp is a small piece of paper issued by a post office, postal administration, or other authorized vendors to customers who pay postage (the cost involved in moving, insuring, or registering mail), who then affix the stamp to the f ...
s from countries including Brazil, Belgium, the Netherlands, and Möbius strips have been a frequent inspiration for the architectural design of buildings and bridges. However, many of these are projects or conceptual designs rather than constructed objects, or stretch their interpretation of the Möbius strip beyond its recognizability as a mathematical form or a functional part of the architecture. An example is the National Library of Kazakhstan, for which a building was planned in the shape of a thickened Möbius strip but refinished with a different design after the original architects pulled out of the project. One notable building incorporating a Möbius strip is the NASCAR Hall of Fame, which is surrounded by a large twisted ribbon of stainless steel acting as a façade and canopy, and evoking the curved shapes of racing tracks. On a smaller scale, ''Moebius Chair'' (2006) by Pedro Reyes is a courting bench whose base and sides have the form of a Möbius strip. As a form of
mathematics and fiber arts Ideas from mathematics have been used as inspiration for fiber arts including quilt making, knitting, cross-stitch, crochet, embroidery and weaving. A wide range of mathematical concepts have been used as inspiration including topology, graph ...
, scarves have been knit into Möbius strips since the work of Elizabeth Zimmermann in the early 1980s. In food styling, Möbius strips have been used for slicing
bagel A bagel ( yi, בײגל, translit=beygl; pl, bajgiel; also spelled beigel) is a bread roll originating in the Jewish communities of Poland. It is traditionally shaped by hand into a roughly hand-sized ring from yeasted wheat dough that is fi ...
s, making loops out of bacon, and creating new shapes for
pasta Pasta (, ; ) is a type of food typically made from an unleavened dough of wheat flour mixed with water or eggs, and formed into sheets or other shapes, then cooked by boiling or baking. Rice flour, or legumes such as beans or lentils, ...
. Although mathematically the Möbius strip and the fourth dimension are both purely spatial concepts, they have often been invoked in speculative fiction as the basis for a time loop into which unwary victims may become trapped. Examples of this trope include Martin Gardners "No-Sided Professor" (1946),
Armin Joseph Deutsch Armin Joseph Deutsch (January 25, 1918–November 11, 1969), was an American astronomer and a science fiction writer. __NOTOC__ Life and career Deutsch was born in Chicago and earned a BS from the University of Arizona in 1940 and, after wartim ...
s "
A Subway Named Mobius "A Subway Named Mobius" is a 1950 science fiction short story by American astronomer Armin Joseph Deutsch. It imagines the results of increasing the complexity of the Boston MTA system (now the MBTA) with a new interconnection. It has been collec ...
" (1950) and the film '' Moebius'' (1996) based on it. An entire world shaped like a Möbius strip is the setting of
Arthur C. Clarke Sir Arthur Charles Clarke (16 December 191719 March 2008) was an English science-fiction writer, science writer, futurist, inventor, undersea explorer, and television series host. He co-wrote the screenplay for the 1968 film '' 2001: A Spac ...
's "The Wall of Darkness" (1946), while conventional Möbius strips are used as clever inventions in multiple stories of
William Hazlett Upson William Hazlett Upson (September 6, 1891 – February 5, 1975) was an American author, best remembered for a series of stories featuring Alexander Botts, a salesman for the Earthworm Tractor Company. Early life Born at Glen Ridge, New Jersey on Se ...
from the 1940s. Other works of fiction have been analyzed as having a Möbius strip–like structure, in which elements of the plot repeat with a twist; these include Marcel Proust '' In Search of Lost Time'' (1913–1927),
Luigi Pirandello Luigi Pirandello (; 28 June 1867 – 10 December 1936) was an Italian dramatist, novelist, poet, and short story writer whose greatest contributions were his plays. He was awarded the 1934 Nobel Prize in Literature for "his almost magical power ...
''
Six Characters in Search of an Author ''Six Characters in Search of an Author'' ( it, Sei personaggi in cerca d'autore, link=no ) is an Italian play by Luigi Pirandello, written and first performed in 1921. An absurdist metatheatric play about the relationship among authors, the ...
'' (1921), Frank Capras '' It's a Wonderful Life'' (1946), John Barth '' Lost in the Funhouse'' (1968), Samuel R. Delanys '' Dhalgren'' (1975) and the film '' Donnie Darko'' (2001). One of the musical canons by J. S. Bach, the fifth of 14 canons (
BWV 1087 The ''Goldberg Variations'', BWV 988, is a musical composition for keyboard by Johann Sebastian Bach, consisting of an aria and a set of 30 variations. First published in 1741, it is named after Johann Gottlieb Goldberg, who may also hav ...
) discovered in 1974 in Bach's copy of the '' Goldberg Variations'', features a glide-reflect symmetry in which each voice in the canon repeats, with inverted notes, the same motif from two measures earlier. Because of this symmetry, this canon can be thought of as having its score written on a Möbius strip. In music theory, tones that differ by an octave are generally considered to be equivalent notes, and the space of possible notes forms a circle, the chromatic circle. Because the Möbius strip is the configuration space of two unordered points on a circle, the space of all two-note chords takes the shape of a Möbius strip. This conception, and generalizations to more points, is a significant application of orbifolds to music theory. Modern musical groups taking their name from the Möbius strip include American electronic rock trio Mobius Band and Norwegian progressive rock band Ring Van Möbius. Möbius strips and their properties have been used in the design of stage magic. One such trick, known as the Afghan bands, uses the fact that the Möbius strip remains a single strip when cut lengthwise. It originated in the 1880s, and was very popular in the first half of the twentieth century. Many versions of this trick exist and have been performed by famous illusionists such as
Harry Blackstone Sr. Harry Bouton Blackstone (born Henry Boughton; September 27, 1885 – November 16, 1965) was a famed stage magician and illusionist of the 20th century. Blackstone was born Harry Bouton in Chicago, Illinois. He began his career as a magician ...
and
Thomas Nelson Downs Thomas Nelson Downs (March 16, 1867 – September 11, 1938) was a manipulative magicians known for his coin tricks. Downs was also known as "The King of Koins". Magic historian David Price has written that Downs "was the first of the great m ...
.


See also

* Möbius counter, a shift register whose output bit is complemented before being fed back into the input bit * Penrose triangle, an impossible figure whose boundary appears to wrap around it in a Möbius strip * Ribbon theory, the mathematical theory of infinitesimally thin strips that follow knotted space curves * Smale–Williams attractor, a fractal formed by repeatedly thickening a space curve to a Möbius strip and then replacing it with the boundary edge * Umbilic torus, a three-dimensional shape with its boundary formed by a Möbius strip, glued to itself along its single edge


Notes


References


External links

* {{DEFAULTSORT:Mobius Strip Topology Recreational mathematics Surfaces