Birch and Swinnerton-Dyer conjecture
   HOME

TheInfoList



OR:

In
mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
, the Birch and Swinnerton-Dyer conjecture (often called the Birch–Swinnerton-Dyer conjecture) describes the set of rational solutions to equations defining an
elliptic curve In mathematics, an elliptic curve is a smooth, projective, algebraic curve of genus one, on which there is a specified point . An elliptic curve is defined over a field and describes points in , the Cartesian product of with itself. I ...
. It is an open problem in the field of
number theory Number theory (or arithmetic or higher arithmetic in older usage) is a branch of pure mathematics devoted primarily to the study of the integers and integer-valued functions. German mathematician Carl Friedrich Gauss (1777–1855) said, "Ma ...
and is widely recognized as one of the most challenging mathematical problems. It is named after mathematicians Bryan John Birch and
Peter Swinnerton-Dyer Sir Henry Peter Francis Swinnerton-Dyer, 16th Baronet, (2 August 1927 – 26 December 2018) was an English mathematician specialising in number theory at the University of Cambridge. As a mathematician he was best known for his part in the ...
, who developed the conjecture during the first half of the 1960s with the help of machine computation. , only special cases of the conjecture have been proven. The modern formulation of the conjecture relates arithmetic data associated with an elliptic curve ''E'' over a
number field In mathematics, an algebraic number field (or simply number field) is an extension field K of the field of rational numbers such that the field extension K / \mathbb has finite degree (and hence is an algebraic field extension). Thus K is a f ...
''K'' to the behaviour of the Hasse–Weil ''L''-function ''L''(''E'', ''s'') of ''E'' at ''s'' = 1. More specifically, it is conjectured that the
rank Rank is the relative position, value, worth, complexity, power, importance, authority, level, etc. of a person or object within a ranking, such as: Level or position in a hierarchical organization * Academic rank * Diplomatic rank * Hierarchy * ...
of the
abelian group In mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, the group operation is comm ...
''E''(''K'') of points of ''E'' is the order of the zero of ''L''(''E'', ''s'') at ''s'' = 1, and the first non-zero coefficient in the Taylor expansion of ''L''(''E'', ''s'') at ''s'' = 1 is given by more refined arithmetic data attached to ''E'' over ''K'' . The conjecture was chosen as one of the seven Millennium Prize Problems listed by the
Clay Mathematics Institute The Clay Mathematics Institute (CMI) is a private, non-profit foundation dedicated to increasing and disseminating mathematical knowledge. Formerly based in Peterborough, New Hampshire, the corporate address is now in Denver, Colorado. CMI's sc ...
, which has offered a $1,000,000 prize for the first correct proof.


Background

proved Mordell's theorem: the group of rational points on an elliptic curve has a finite basis. This means that for any elliptic curve there is a finite subset of the rational points on the curve, from which all further rational points may be generated. If the number of rational points on a curve is infinite then some point in a finite basis must have infinite
order Order, ORDER or Orders may refer to: * Categorization, the process in which ideas and objects are recognized, differentiated, and understood * Heterarchy, a system of organization wherein the elements have the potential to be ranked a number of ...
. The number of ''independent'' basis points with infinite order is called the
rank Rank is the relative position, value, worth, complexity, power, importance, authority, level, etc. of a person or object within a ranking, such as: Level or position in a hierarchical organization * Academic rank * Diplomatic rank * Hierarchy * ...
of the curve, and is an important invariant property of an elliptic curve. If the rank of an elliptic curve is 0, then the curve has only a finite number of rational points. On the other hand, if the rank of the curve is greater than 0, then the curve has an infinite number of rational points. Although Mordell's theorem shows that the rank of an elliptic curve is always finite, it does not give an effective method for calculating the rank of every curve. The rank of certain elliptic curves can be calculated using numerical methods but (in the current state of knowledge) it is unknown if these methods handle all curves. An ''L''-function ''L''(''E'', ''s'') can be defined for an elliptic curve ''E'' by constructing an
Euler product In number theory, an Euler product is an expansion of a Dirichlet series into an infinite product indexed by prime numbers. The original such product was given for the sum of all positive integers raised to a certain power as proven by Leonhard Eu ...
from the number of points on the curve modulo each
prime A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only ways ...
''p''. This ''L''-function is analogous to the
Riemann zeta function The Riemann zeta function or Euler–Riemann zeta function, denoted by the Greek letter (zeta), is a mathematical function of a complex variable defined as \zeta(s) = \sum_^\infty \frac = \frac + \frac + \frac + \cdots for \operatorname(s) > ...
and the Dirichlet L-series that is defined for a binary
quadratic form In mathematics, a quadratic form is a polynomial with terms all of degree two ("form" is another name for a homogeneous polynomial). For example, :4x^2 + 2xy - 3y^2 is a quadratic form in the variables and . The coefficients usually belong to ...
. It is a special case of a Hasse–Weil L-function. The natural definition of ''L''(''E'', ''s'') only converges for values of ''s'' in the complex plane with Re(''s'') > 3/2.
Helmut Hasse Helmut Hasse (; 25 August 1898 – 26 December 1979) was a German mathematician working in algebraic number theory, known for fundamental contributions to class field theory, the application of ''p''-adic numbers to local class field theory and ...
conjectured that ''L''(''E'', ''s'') could be extended by
analytic continuation In complex analysis, a branch of mathematics, analytic continuation is a technique to extend the domain of definition of a given analytic function. Analytic continuation often succeeds in defining further values of a function, for example in a ...
to the whole complex plane. This conjecture was first proved by for elliptic curves with
complex multiplication In mathematics, complex multiplication (CM) is the theory of elliptic curves ''E'' that have an endomorphism ring larger than the integers. Put another way, it contains the theory of elliptic functions with extra symmetries, such as are visible wh ...
. It was subsequently shown to be true for all elliptic curves over Q, as a consequence of the
modularity theorem The modularity theorem (formerly called the Taniyama–Shimura conjecture, Taniyama-Weil conjecture or modularity conjecture for elliptic curves) states that elliptic curves over the field of rational numbers are related to modular forms. And ...
in 2001. Finding rational points on a general elliptic curve is a difficult problem. Finding the points on an elliptic curve modulo a given prime ''p'' is conceptually straightforward, as there are only a finite number of possibilities to check. However, for large primes it is computationally intensive.


History

In the early 1960s
Peter Swinnerton-Dyer Sir Henry Peter Francis Swinnerton-Dyer, 16th Baronet, (2 August 1927 – 26 December 2018) was an English mathematician specialising in number theory at the University of Cambridge. As a mathematician he was best known for his part in the ...
used the EDSAC-2 computer at the
University of Cambridge Computer Laboratory The Department of Computer Science and Technology, formerly the Computer Laboratory, is the computer science department of the University of Cambridge. it employed 35 academic staff, 25 support staff, 35 affiliated research staff, and about 15 ...
to calculate the number of points modulo ''p'' (denoted by ''Np'') for a large number of primes ''p'' on elliptic curves whose rank was known. From these numerical results conjectured that ''Np'' for a curve ''E'' with rank ''r'' obeys an asymptotic law :\prod_ \frac \approx C\log (x)^r \mbox x \rightarrow \infty where ''C'' is a constant. Initially this was based on somewhat tenuous trends in graphical plots; this induced a measure of skepticism in J. W. S. Cassels (Birch's Ph.D. advisor). Over time the numerical evidence stacked up. This in turn led them to make a general conjecture about the behaviour of a curve's L-function ''L''(''E'', ''s'') at ''s'' = 1, namely that it would have a zero of order ''r'' at this point. This was a far-sighted conjecture for the time, given that the analytic continuation of ''L''(''E'', ''s'') there was only established for curves with complex multiplication, which were also the main source of numerical examples. (NB that the
reciprocal Reciprocal may refer to: In mathematics * Multiplicative inverse, in mathematics, the number 1/''x'', which multiplied by ''x'' gives the product 1, also known as a ''reciprocal'' * Reciprocal polynomial, a polynomial obtained from another pol ...
of the L-function is from some points of view a more natural object of study; on occasion this means that one should consider poles rather than zeroes.) The conjecture was subsequently extended to include the prediction of the precise leading Taylor coefficient of the L-function at ''s'' = 1. It is conjecturally given by :\frac = \frac where the quantities on the right hand side are invariants of the curve, studied by Cassels,
Tate Tate is an institution that houses, in a network of four art galleries, the United Kingdom's national collection of British art, and international modern and contemporary art. It is not a government institution, but its main sponsor is the U ...
, Shafarevich and others : \#E_ is the order of the torsion group, \#\mathrm(E) is the order of the
Tate–Shafarevich group In arithmetic geometry, the Tate–Shafarevich group of an abelian variety (or more generally a group scheme) defined over a number field consists of the elements of the Weil–Châtelet group that become trivial in all of the completions of ...
, \Omega_E is the real period of ''E'' multiplied by the number of connected components of ''E'', R_E is the regulator of ''E'' which is defined via the canonical heights of a basis of rational points, c_p is the Tamagawa number of ''E'' at a prime ''p'' dividing the conductor ''N'' of ''E''. It can be found by Tate's algorithm.


Current status

The Birch and Swinnerton-Dyer conjecture has been proved only in special cases: # proved that if ''E'' is a curve over a number field ''F'' with complex multiplication by an
imaginary quadratic field In algebraic number theory, a quadratic field is an algebraic number field of degree two over \mathbf, the rational numbers. Every such quadratic field is some \mathbf(\sqrt) where d is a (uniquely defined) square-free integer different from 0 ...
''K'' of class number 1, ''F'' = ''K'' or Q, and ''L''(''E'', 1) is not 0 then ''E''(''F'') is a finite group. This was extended to the case where ''F'' is any finite abelian extension of ''K'' by . # showed that if a modular elliptic curve has a first-order zero at ''s'' = 1 then it has a rational point of infinite order; see Gross–Zagier theorem. # showed that a modular elliptic curve ''E'' for which ''L''(''E'', 1) is not zero has rank 0, and a modular elliptic curve ''E'' for which ''L''(''E'', 1) has a first-order zero at ''s'' = 1 has rank 1. # showed that for elliptic curves defined over an imaginary quadratic field ''K'' with complex multiplication by ''K'', if the ''L''-series of the elliptic curve was not zero at ''s'' = 1, then the ''p''-part of the Tate–Shafarevich group had the order predicted by the Birch and Swinnerton-Dyer conjecture, for all primes ''p'' > 7. # , extending work of , proved that all elliptic curves defined over the rational numbers are modular, which extends results #2 and #3 to all elliptic curves over the rationals, and shows that the ''L''-functions of all elliptic curves over Q are defined at ''s'' = 1. # proved that the average rank of the Mordell–Weil group of an elliptic curve over Q is bounded above by 7/6. Combining this with the p-parity theorem of and and with the proof of the main conjecture of Iwasawa theory for GL(2) by , they conclude that a positive proportion of elliptic curves over Q have analytic rank zero, and hence, by , satisfy the Birch and Swinnerton-Dyer conjecture. There are currently no proofs involving curves with rank greater than 1. There is extensive numerical evidence for the truth of the conjecture.


Consequences

Much like the
Riemann hypothesis In mathematics, the Riemann hypothesis is the conjecture that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real part . Many consider it to be the most important unsolved problem in p ...
, this conjecture has multiple consequences, including the following two: * Let be an odd square-free integer. Assuming the Birch and Swinnerton-Dyer conjecture, is the area of a right triangle with rational side lengths (a congruent number) if and only if the number of triplets of integers (, , ) satisfying is twice the number of triplets satisfying . This statement, due to Tunnell's theorem , is related to the fact that ''n'' is a congruent number if and only if the elliptic curve has a rational point of infinite order (thus, under the Birch and Swinnerton-Dyer conjecture, its -function has a zero at ). The interest in this statement is that the condition is easily verified. *In a different direction, certain analytic methods allow for an estimation of the order of zero in the center of the critical strip of families of ''L''-functions. Admitting the BSD conjecture, these estimations correspond to information about the rank of families of elliptic curves in question. For example: suppose the
generalized Riemann hypothesis The Riemann hypothesis is one of the most important conjectures in mathematics. It is a statement about the zeros of the Riemann zeta function. Various geometrical and arithmetical objects can be described by so-called global ''L''-functions, whic ...
and the BSD conjecture, the average rank of curves given by is smaller than .


Notes


References

* * * * * * * * * * * * * * * * *


External links

* *
The Birch and Swinnerton-Dyer Conjecture
An Interview with Professor Henri Darmon by Agnes F. Beaudry
''What is the Birch and Swinnerton-Dyer Conjecture?''
lecture by Manjul Bhargava (september 2016) given during the Clay Research Conference held at the University of Oxford {{DEFAULTSORT:Birch And Swinnerton-Dyer Conjecture Conjectures Diophantine geometry Millennium Prize Problems Number theory University of Cambridge Computer Laboratory Zeta and L-functions