HOME
*





Euler Product
In number theory, an Euler product is an expansion of a Dirichlet series into an infinite product indexed by prime numbers. The original such product was given for the sum of all positive integers raised to a certain power as proven by Leonhard Euler. This series and its continuation to the entire complex plane would later become known as the Riemann zeta function. Definition In general, if is a bounded multiplicative function, then the Dirichlet series :\sum_ \frac\, is equal to :\prod_ P(p, s) \quad \text \operatorname(s) >1 . where the product is taken over prime numbers , and is the sum :\sum_^\infty \frac = 1 + \frac + \frac + \frac + \cdots In fact, if we consider these as formal generating functions, the existence of such a ''formal'' Euler product expansion is a necessary and sufficient condition that be multiplicative: this says exactly that is the product of the whenever factors as the product of the powers of distinct primes . An important special case is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Number Theory
Number theory (or arithmetic or higher arithmetic in older usage) is a branch of pure mathematics devoted primarily to the study of the integers and integer-valued functions. German mathematician Carl Friedrich Gauss (1777–1855) said, "Mathematics is the queen of the sciences—and number theory is the queen of mathematics."German original: "Die Mathematik ist die Königin der Wissenschaften, und die Arithmetik ist die Königin der Mathematik." Number theorists study prime numbers as well as the properties of mathematical objects made out of integers (for example, rational numbers) or defined as generalizations of the integers (for example, algebraic integers). Integers can be considered either in themselves or as solutions to equations (Diophantine geometry). Questions in number theory are often best understood through the study of analytical objects (for example, the Riemann zeta function) that encode properties of the integers, primes or other number-theoretic object ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Liouville Function
The Liouville Lambda function, denoted by λ(''n'') and named after Joseph Liouville, is an important arithmetic function. Its value is +1 if ''n'' is the product of an even number of prime numbers, and −1 if it is the product of an odd number of primes. Explicitly, the fundamental theorem of arithmetic states that any positive integer ''n'' can be represented uniquely as a product of powers of primes:   n = p_1^\cdots p_k^   where ''p''1 0 is some absolute limiting constant. Define the related sum : T(n) = \sum_^n \frac. It was open for some time whether ''T''(''n'') ≥ 0 for sufficiently big ''n'' ≥ ''n''0 (this conjecture is occasionally–though incorrectly–attributed to Pál Turán). This was then disproved by , who showed that ''T''(''n'') takes negative values infinitely often. A confirmation of this positivity conjecture would have led to a proof of the Riemann hypothesis, as was shown by Pál Turán. Generalizations More generally, we ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Artin's Conjecture On Primitive Roots
In number theory, Artin's conjecture on primitive roots states that a given integer ''a'' that is neither a square number nor −1 is a primitive root modulo infinitely many primes ''p''. The conjecture also ascribes an asymptotic density to these primes. This conjectural density equals Artin's constant or a rational multiple thereof. The conjecture was made by Emil Artin to Helmut Hasse on September 27, 1927, according to the latter's diary. The conjecture is still unresolved as of 2022. In fact, there is no single value of ''a'' for which Artin's conjecture is proved. Formulation Let ''a'' be an integer that is not a square number and not −1. Write ''a'' = ''a''0''b''2 with ''a''0 square-free. Denote by ''S''(''a'') the set of prime numbers ''p'' such that ''a'' is a primitive root modulo ''p''. Then the conjecture states # ''S''(''a'') has a positive asymptotic density inside the set of primes. In particular, ''S''(''a'') is infinite. # Under the conditions ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Landau–Ramanujan Constant
In mathematics and the field of number theory, the Landau–Ramanujan constant is the positive real number ''b'' that occurs in a theorem proved by Edmund Landau in 1908, stating that for large x, the number of positive integers below x that are the sum of two square numbers behaves asymptotically as :\dfrac. This constant ''b'' was rediscovered in 1913 by Srinivasa Ramanujan, in the first letter he wrote to G.H. Hardy.S. Ramanujan, letter to G.H. Hardy, 16 January, 1913; see: P. Moree and J. Cazaran, ''On a claim of Ramanujan in his first letter to Hardy'', Exposition. Math. 17 (1999), no.4, 289-311. Sums of two squares By the sum of two squares theorem, the numbers that can be expressed as a sum of two squares of integers are the ones for which each prime number A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For examp ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Twin Prime
A twin prime is a prime number that is either 2 less or 2 more than another prime number—for example, either member of the twin prime pair (41, 43). In other words, a twin prime is a prime that has a prime gap of two. Sometimes the term ''twin prime'' is used for a pair of twin primes; an alternative name for this is prime twin or prime pair. Twin primes become increasingly rare as one examines larger ranges, in keeping with the general tendency of gaps between adjacent primes to become larger as the numbers themselves get larger. However, it is unknown whether there are infinitely many twin primes (the so-called twin prime conjecture) or if there is a largest pair. The breakthrough work of Yitang Zhang in 2013, as well as work by James Maynard, Terence Tao and others, has made substantial progress towards proving that there are infinitely many twin primes, but at present this remains unsolved. Properties Usually the pair (2, 3) is not considered to be a pair of twin primes ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Superparticular Number
In mathematics, a superparticular ratio, also called a superparticular number or epimoric ratio, is the ratio of two consecutive integer numbers. More particularly, the ratio takes the form: :\frac = 1 + \frac where is a positive integer. Thus: Superparticular ratios were written about by Nicomachus in his treatise ''Introduction to Arithmetic''. Although these numbers have applications in modern pure mathematics, the areas of study that most frequently refer to the superparticular ratios by this name are music theory and the history of mathematics. Mathematical properties As Leonhard Euler observed, the superparticular numbers (including also the multiply superparticular ratios, numbers formed by adding an integer other than one to a unit fraction) are exactly the rational numbers whose continued fraction terminates after two terms. The numbers whose continued fraction terminates in one term are the integers, while the remaining numbers, with three or more terms in their ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Leibniz Formula For π
In mathematics, the Leibniz formula for , named after Gottfried Leibniz, states that 1-\frac+\frac-\frac+\frac-\cdots=\frac, an alternating series. It is also called the Madhava–Leibniz series as it is a special case of a more general series expansion for the inverse tangent function, first discovered by the Indian mathematician Madhava of Sangamagrama in the 14th century, the specific case first published by Leibniz around 1676. The series for the inverse tangent function, which is also known as Gregory's series, can be given by: : \arctan x = x - \frac + \frac - \frac + \cdots The Leibniz formula for \frac can be obtained by putting x=1 into this series. It also is the Dirichlet -series of the non-principal Dirichlet character of modulus 4 evaluated at s=1, and, therefore, the value of the Dirichlet beta function. Proofs Proof 1 \begin \frac &= \arctan(1) \\ &= \int_0^1 \frac 1 \, dx \\ pt& = \int_0^1\left(\sum_^n (-1)^k x^+\frac\right) \, dx \\ pt& = \left(\sum ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Constant (mathematics)
In mathematics, the word constant conveys multiple meanings. As an adjective, it refers to non-variance (i.e. unchanging with respect to some other value); as a noun, it has two different meanings: * A fixed and well-defined number or other non-changing mathematical object. The terms '' mathematical constant'' or '' physical constant'' are sometimes used to distinguish this meaning. * A function whose value remains unchanged (i.e., a constant function). Such a constant is commonly represented by a variable which does not depend on the main variable(s) in question. For example, a general quadratic function is commonly written as: :a x^2 + b x + c\, , where , and are constants (or parameters), and a variable—a placeholder for the argument of the function being studied. A more explicit way to denote this function is :x\mapsto a x^2 + b x + c \, , which makes the function-argument status of (and by extension the constancy of , and ) clear. In this example , and ar ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Polylogarithm
In mathematics, the polylogarithm (also known as Jonquière's function, for Alfred Jonquière) is a special function of order and argument . Only for special values of does the polylogarithm reduce to an elementary function such as the natural logarithm or a rational function. In quantum statistics, the polylogarithm function appears as the closed form of integrals of the Fermi–Dirac distribution and the Bose–Einstein distribution, and is also known as the Fermi–Dirac integral or the Bose–Einstein integral. In quantum electrodynamics, polylogarithms of positive integer order arise in the calculation of processes represented by higher-order Feynman diagrams. The polylogarithm function is equivalent to the Hurwitz zeta function — either function can be expressed in terms of the other — and both functions are special cases of the Lerch transcendent. Polylogarithms should not be confused with polylogarithmic functions nor with the offset logarithmic integral ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Coprime
In mathematics, two integers and are coprime, relatively prime or mutually prime if the only positive integer that is a divisor of both of them is 1. Consequently, any prime number that divides does not divide , and vice versa. This is equivalent to their greatest common divisor (GCD) being 1. One says also '' is prime to '' or '' is coprime with ''. The numbers 8 and 9 are coprime, despite the fact that neither considered individually is a prime number, since 1 is their only common divisor. On the other hand, 6 and 9 are not coprime, because they are both divisible by 3. The numerator and denominator of a reduced fraction are coprime, by definition. Notation and testing Standard notations for relatively prime integers and are: and . In their 1989 textbook '' Concrete Mathematics'', Ronald Graham, Donald Knuth, and Oren Patashnik proposed that the notation a\perp b be used to indicate that and are relatively prime and that the term "prime" be used instead of coprime ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]