HOME

TheInfoList



OR:

Paracrine signaling is a form of
cell signaling In biology, cell signaling (cell signalling in British English) or cell communication is the ability of a cell to receive, process, and transmit signals with its environment and with itself. Cell signaling is a fundamental property of all cellula ...
, a type of
cellular communication A mobile phone, cellular phone, cell phone, cellphone, handphone, hand phone or pocket phone, sometimes shortened to simply mobile, cell, or just phone, is a portable telephone that can make and receive calls over a radio frequency link whil ...
in which a cell produces a signal to induce changes in nearby cells, altering the behaviour of those cells. Signaling molecules known as paracrine factors diffuse over a relatively short distance (local action), as opposed to cell signaling by endocrine factors, hormones which travel considerably longer distances via the
circulatory system The blood circulatory system is a system of organs that includes the heart, blood vessels, and blood which is circulated throughout the entire body of a human or other vertebrate. It includes the cardiovascular system, or vascular system, tha ...
; juxtacrine interactions; and autocrine signaling. Cells that produce paracrine factors secrete them into the immediate
extracellular This glossary of biology terms is a list of definitions of fundamental terms and concepts used in biology, the study of life and of living organisms. It is intended as introductory material for novices; for more specific and technical definitions ...
environment. Factors then travel to nearby cells in which the gradient of factor received determines the outcome. However, the exact distance that paracrine factors can travel is not certain. Although paracrine signaling elicits a diverse array of responses in the induced cells, most paracrine factors utilize a relatively streamlined set of
receptor Receptor may refer to: *Sensory receptor, in physiology, any structure which, on receiving environmental stimuli, produces an informative nerve impulse *Receptor (biochemistry), in biochemistry, a protein molecule that receives and responds to a n ...
s and pathways. In fact, different
organ Organ may refer to: Biology * Organ (biology), a part of an organism Musical instruments * Organ (music), a family of keyboard musical instruments characterized by sustained tone ** Electronic organ, an electronic keyboard instrument ** Hammond ...
s in the body - even between different species - are known to utilize a similar sets of paracrine factors in differential development. The highly conserved receptors and pathways can be organized into four major families based on similar structures: fibroblast growth factor (FGF) family, Hedgehog family, Wnt family, and TGF-β superfamily. Binding of a paracrine factor to its respective receptor initiates signal transduction cascades, eliciting different responses.


Paracrine factors induce competent responders

In order for paracrine factors to successfully induce a response in the receiving cell, that cell must have the appropriate receptors available on the cell membrane to receive the signals, also known as being
competent Competence may refer to: *Competence (geology), the resistance of a rock against deformation or plastic flow. *Competence (human resources), a standardized requirement for an individual to properly perform a specific job *Competence (law), the me ...
. Additionally, the responding cell must also have the ability to be mechanistically induced.


Fibroblast growth factor (FGF) family

Although the FGF family of paracrine factors has a broad range of functions, major findings support the idea that they primarily stimulate proliferation and differentiation. To fulfill many diverse functions, FGFs can be alternatively spliced or even have different initiation codons to create hundreds of different FGF isoforms. One of the most important functions of the FGF receptors (FGFR) is in limb development. This signaling involves nine different
alternatively spliced Alternative splicing, or alternative RNA splicing, or differential splicing, is an alternative splicing process during gene expression that allows a single gene to code for multiple proteins. In this process, particular exons of a gene may b ...
isoforms of the receptor. ''Fgf''8 and ''Fgf''10 are two of the critical players in limb development. In the forelimb initiation and limb growth in mice, axial (lengthwise) cues from the intermediate mesoderm produces ''Tbx''5, which subsequently signals to the same mesoderm to produce ''Fgf''10. ''Fgf''10 then signals to the ectoderm to begin production of ''Fgf''8, which also stimulates the production of ''Fgf''10. Deletion of ''Fgf''10 results in limbless mice. Additionally, paracrine signaling of Fgf is essential in the developing eye of chicks. The ''fgf''8 mRNA becomes localized in what differentiates into the neural
retina The retina (from la, rete "net") is the innermost, light-sensitive layer of tissue of the eye of most vertebrates and some molluscs. The optics of the eye create a focused two-dimensional image of the visual world on the retina, which the ...
of the optic cup. These cells are in contact with the outer ectoderm cells, which will eventually become the lens.
Phenotype In genetics, the phenotype () is the set of observable characteristics or traits of an organism. The term covers the organism's morphology (biology), morphology or physical form and structure, its Developmental biology, developmental proc ...
and survival of mice after knockout of some FGFR genes:


Receptor tyrosine kinase (RTK) pathway

Paracrine signaling through fibroblast growth factors and its respective receptors utilizes the receptor
tyrosine -Tyrosine or tyrosine (symbol Tyr or Y) or 4-hydroxyphenylalanine is one of the 20 standard amino acids that are used by cells to synthesize proteins. It is a non-essential amino acid with a polar side group. The word "tyrosine" is from the G ...
pathway. This signaling pathway has been highly studied, using ''Drosophila'' eyes and human cancers. Binding of FGF to FGFR phosphorylates the idle kinase and activates the RTK pathway. This pathway begins at the cell membrane surface, where a
ligand In coordination chemistry, a ligand is an ion or molecule (functional group) that binds to a central metal atom to form a coordination complex. The bonding with the metal generally involves formal donation of one or more of the ligand's elect ...
binds to its specific receptor. Ligands that bind to RTKs include fibroblast growth factors, epidermal growth factors, platelet-derived growth factors, and
stem cell factor Stem cell factor (also known as SCF, KIT-ligand, KL, or steel factor) is a cytokine that binds to the c-KIT receptor (CD117). SCF can exist both as a transmembrane protein and a soluble protein. This cytokine plays an important role in hematopoi ...
. This dimerizes the transmembrane receptor to another RTK receptor, which causes the autophosphorylation and subsequent conformational change of the homodimerized receptor. This conformational change activates the dormant kinase of each RTK on the tyrosine residue. Due to the fact that the receptor spans across the membrane from the extracellular environment, through the lipid bilayer, and into the
cytoplasm In cell biology, the cytoplasm is all of the material within a eukaryotic cell, enclosed by the cell membrane, except for the cell nucleus. The material inside the nucleus and contained within the nuclear membrane is termed the nucleoplasm. ...
, the binding of the receptor to the ligand also causes the trans phosphorylation of the cytoplasmic domain of the receptor. An adaptor protein (such as SOS) recognizes the phosphorylated tyrosine on the receptor. This protein functions as a bridge which connects the RTK to an intermediate protein (such as GNRP), starting the intracellular signaling cascade. In turn, the intermediate protein stimulates GDP-bound Ras to the activated GTP-bound Ras. GAP eventually returns Ras to its inactive state. Activation of
Ras Ras or RAS may refer to: Arts and media * RAS Records Real Authentic Sound, a reggae record label * Rundfunk Anstalt Südtirol, a south Tyrolese public broadcasting service * Rás 1, an Icelandic radio station * Rás 2, an Icelandic radio sta ...
has the potential to initiate three signaling pathways downstream of Ras: Ras→Raf→MAP kinase pathway, PI3 kinase pathway, and Ral pathway. Each pathway leads to the activation of transcription factors which enter the nucleus to alter gene expression.


RTK receptor and cancer

Paracrine signaling of growth factors between nearby cells has been shown to exacerbate
carcinogenesis Carcinogenesis, also called oncogenesis or tumorigenesis, is the formation of a cancer, whereby normal cells are transformed into cancer cells. The process is characterized by changes at the cellular, genetic, and epigenetic levels and abnor ...
. In fact, mutant forms of a single RTK may play a causal role in very different types of cancer. The Kit proto-oncogene encodes a tyrosine kinase receptor whose ligand is a paracrine protein called stem cell factor (SCF), which is important in hematopoiesis (formation of cells in blood). The Kit receptor and related tyrosine kinase receptors actually are inhibitory and effectively suppresses receptor firing. Mutant forms of the Kit receptor, which fire constitutively in a ligand-independent fashion, are found in a diverse array of cancerous malignancies.


RTK pathway and cancer

Research on thyroid cancer has elucidated the theory that paracrine signaling may aid in creating tumor microenvironments.
Chemokine Chemokines (), or chemotactic cytokines, are a family of small cytokines or signaling proteins secreted by cells that induce directional movement of leukocytes, as well as other cell types, including endothelial and epithelial cells. In additi ...
transcription is upregulated when Ras is in the GTP-bound state. The chemokines are then released from the cell, free to bind to another nearby cell. Paracrine signaling between neighboring cells creates this positive feedback loop. Thus, the constitutive transcription of upregulated proteins form ideal environments for tumors to arise. Effectively, multiple bindings of ligands to the RTK receptors overstimulates the Ras-Raf-MAPK pathway, which overexpresses the mitogenic and invasive capacity of cells.


JAK-STAT pathway

In addition to RTK pathway, fibroblast growth factors can also activate the JAK-STAT signaling pathway. Instead of carrying covalently associated tyrosine kinase domains, Jak-STAT receptors form noncovalent complexes with tyrosine kinases of the Jak ( Janus kinase) class. These receptors bind are for erythropoietin (important for erythropoiesis), thrombopoietin (important for platelet formation), and interferon (important for mediating immune cell function). After dimerization of the cytokine receptors following ligand binding, the JAKs transphosphorylate each other. The resulting phosphotyrosines attract STAT proteins. The STAT proteins dimerize and enter the nucleus to act as transcription factors to alter gene expression. In particular, the STATs transcribe genes that aid in cell proliferation and survival – such as myc. Phenotype and survival of mice after knockout of some JAK or STAT genes:


Aberrant JAK-STAT pathway and bone mutations

The JAK-STAT signaling pathway is instrumental in the development of limbs, specifically in its ability to regulate bone growth through paracrine signaling of cytokines. However, mutations in this pathway have been implicated in severe forms of dwarfism:
thanatophoric dysplasia Thanatophoric dysplasia is a severe skeletal disorder characterized by a disproportionately small ribcage, extremely short limbs and folds of extra skin on the arms and legs. Symptoms and signs Infants with this condition have disproportionately ...
(lethal) and achondroplasic dwarfism (viable). This is due to a mutation in a Fgf gene, causing a premature and constitutive activation of the Stat1 transcription factor. Chondrocyte cell division is prematurely terminated, resulting in lethal dwarfism. Rib and limb bone growth plate cells are not transcribed. Thus, the inability of the rib cage to expand prevents the newborn's breathing.


JAK-STAT pathway and cancer

Research on paracrine signaling through the JAK-STAT pathway revealed its potential in activating invasive behavior of ovarian
epithelial cells Epithelium or epithelial tissue is one of the four basic types of animal tissue, along with connective tissue, muscle tissue and nervous tissue. It is a thin, continuous, protective layer of compactly packed cells with a little intercellu ...
. This epithelial to mesenchymal transition is highly evident in
metastasis Metastasis is a pathogenic agent's spread from an initial or primary site to a different or secondary site within the host's body; the term is typically used when referring to metastasis by a cancerous tumor. The newly pathological sites, the ...
. Paracrine signaling through the JAK-STAT pathway is necessary in the transition from stationary epithelial cells to mobile mesenchymal cells, which are capable of invading surrounding tissue. Only the JAK-STAT pathway has been found to induce migratory cells.


Hedgehog family

The Hedgehog protein family is involved in induction of cell types and the creation of tissue boundaries and patterning and are found in all bilateral organisms. Hedgehog proteins were first discovered and studied in '' Drosophila''. Hedgehog proteins produce key signals for the establishment of limb and body plan of fruit flies as well as
homeostasis In biology, homeostasis ( British also homoeostasis) (/hɒmɪə(ʊ)ˈsteɪsɪs/) is the state of steady internal, physical, and chemical conditions maintained by living systems. This is the condition of optimal functioning for the organism and ...
of adult tissues, involved in late embryogenesis and metamorphosis. At least three "Drosophila" hedgehog homologs have been found in vertebrates: sonic hedgehog, desert hedgehog, and Indian hedgehog. Sonic hedgehog ( SHH) has various roles in vertebrae development, mediating signaling and regulating the organization of central nervous system, limb, and somite polarity. Desert hedgehog ( DHH) is expressed in the Sertoli cells involved in spermatogenesis. Indian hedgehog ( IHH) is expressed in the gut and cartilage, important in postnatal bone growth.


Hedgehog signaling pathway

Members of the Hedgehog protein family act by binding to a transmembrane " Patched" receptor, which is bound to the " Smoothened" protein, by which the Hedgehog signal can be transduced. In the absence of Hedgehog, the Patched receptor inhibits Smoothened action. Inhibition of Smoothened causes the Cubitus interruptus (Ci), Fused, and Cos protein complex attached to microtubules to remain intact. In this conformation, the Ci protein is cleaved so that a portion of the protein is allowed to enter the nucleus and act as a transcriptional repressor. In the presence of Hedgehog, Patched no longer inhibits Smoothened. Then active Smoothened protein is able to inhibit
PKA PKA may refer to: * Professionally known as: ** Pen name ** Stage persona * p''K''a, the symbol for the acid dissociation constant at logarithmic scale * Protein kinase A, a class of cAMP-dependent enzymes * Pi Kappa Alpha, the North-American so ...
and Slimb, so that the Ci protein is not cleaved. This intact Ci protein can enter the nucleus, associate with CPB protein and act as a transcriptional activator, inducing the expression of Hedgehog-response genes.


Hedgehog signaling pathway and cancer

The Hedgehog Signaling pathway is critical in proper tissue patterning and orientation during normal development of most animals. Hedgehog proteins induce cell proliferation in certain cells and differentiations in others. Aberrant activation of the Hedgehog pathway has been implicated in several types of cancers, Basal Cell Carcinoma in particular. This uncontrolled activation of the Hedgehog proteins can be caused by mutations to the signal pathway, which would be
ligand In coordination chemistry, a ligand is an ion or molecule (functional group) that binds to a central metal atom to form a coordination complex. The bonding with the metal generally involves formal donation of one or more of the ligand's elect ...
independent, or a mutation that causes overexpression of the Hedgehog protein, which would be ligand dependent. In addition, therapy-induced Hedgehog pathway activation has been shown to be necessary for progression of Prostate Cancer tumors after
androgen deprivation therapy Androgen deprivation therapy (ADT), also called androgen suppression therapy, is an antihormone therapy whose main use is in treating prostate cancer. Prostate cancer cells usually require androgen hormones, such as testosterone, to grow. ADT red ...
. This connection between the Hedgehog signaling pathway and human cancers may provide for the possible of therapeutic intervention as treatment for such cancers. The Hedgehog signaling pathway is also involved in normal regulation of
stem-cell In multicellular organisms, stem cells are undifferentiated or partially differentiated cells that can differentiate into various types of cells and proliferate indefinitely to produce more of the same stem cell. They are the earliest type of ...
populations, and required for normal growth and regeneration of damaged organs. This may provide another possible route for tumorigenesis via the Hedgehog pathway.


Wnt family

The Wnt protein family includes a large number of cysteine-rich glycoproteins. The Wnt proteins activate signal transduction cascades via three different pathways, the canonical Wnt pathway, the noncanonical planar cell polarity (PCP) pathway, and the noncanonical Wnt/Ca2+ pathway. Wnt proteins appear to control a wide range of developmental processes and have been seen as necessary for control of spindle orientation, cell polarity, cadherin mediated adhesion, and early development of embryos in many different organisms. Current research has indicated that deregulation of Wnt signaling plays a role in tumor formation, because at a cellular level, Wnt proteins often regulated cell proliferation, cell morphology, cell
motility Motility is the ability of an organism to move independently, using metabolic energy. Definitions Motility, the ability of an organism to move independently, using metabolic energy, can be contrasted with sessility, the state of organisms th ...
, and cell fate.


The canonical Wnt signaling pathway

In the canonical pathway, Wnt proteins binds to its transmembrane receptor of the Frizzled family of proteins. The binding of Wnt to a Frizzled protein activates the Dishevelled protein. In its active state the Dishevelled protein inhibits the activity of the glycogen synthase kinase 3 ( GSK3) enzyme. Normally active GSK3 prevents the dissociation of β-catenin to the APC protein, which results in
β-catenin Catenin beta-1, also known as beta-catenin (β-catenin), is a protein that in humans is encoded by the ''CTNNB1'' gene. Beta-catenin is a dual function protein, involved in regulation and coordination of cell–cell adhesion and gene transcrip ...
degradation. Thus inhibited GSK3, allows β-catenin to dissociate from APC, accumulate, and travel to nucleus. In the nucleus β-catenin associates with Lef/Tcf transcription factor, which is already working on DNA as a repressor, inhibiting the transcription of the genes it binds. Binding of β-catenin to Lef/Tcf works as a transcription activator, activating the transcription of the Wnt-responsive genes.


The noncanonical Wnt signaling pathways

The noncanonical Wnt pathways provide a signal transduction pathway for Wnt that does not involve
β-catenin Catenin beta-1, also known as beta-catenin (β-catenin), is a protein that in humans is encoded by the ''CTNNB1'' gene. Beta-catenin is a dual function protein, involved in regulation and coordination of cell–cell adhesion and gene transcrip ...
. In the noncanonical pathways, Wnt affects the
actin Actin is a family of globular multi-functional proteins that form microfilaments in the cytoskeleton, and the thin filaments in muscle fibrils. It is found in essentially all eukaryotic cells, where it may be present at a concentration of ov ...
and
microtubular Microtubules are polymers of tubulin that form part of the cytoskeleton and provide structure and shape to eukaryotic cells. Microtubules can be as long as 50  micrometres, as wide as 23 to 27  nm and have an inner diameter between 1 ...
cytoskeleton The cytoskeleton is a complex, dynamic network of interlinking protein filaments present in the cytoplasm of all cells, including those of bacteria and archaea. In eukaryotes, it extends from the cell nucleus to the cell membrane and is co ...
as well as gene transcription.


The noncanonical planar cell polarity (PCP) pathway

The noncanonical PCP pathway regulates cell morphology, division, and movement. Once again Wnt proteins binds to and activates Frizzled so that Frizzled activates a Dishevelled protein that is tethered to the plasma membrane through a Prickle protein and transmembrane Stbm protein. The active Dishevelled activates RhoA GTPase through Dishevelled associated activator of morphogenesis 1 (Daam1) and the
Rac protein RAC or Rac may refer to: Organizations * Radio Amateurs of Canada * RATCH-Australia Corporation, electricity generator * Refugee Action Collective (Victoria), Melbourne, Australia * Religious Action Center of Reform Judaism, US * Rent-A-Cent ...
. Active RhoA is able to induce cytoskeleton changes by activating Roh-associated kinase (ROCK) and affect gene transcription directly. Active Rac can directly induce cytoskeleton changes and affect gene transcription through activation of JNK.


The noncanonical Wnt/Ca2+ pathway

The noncanonical Wnt/Ca2+ pathway regulates intracellular
calcium Calcium is a chemical element with the symbol Ca and atomic number 20. As an alkaline earth metal, calcium is a reactive metal that forms a dark oxide-nitride layer when exposed to air. Its physical and chemical properties are most similar ...
levels. Again Wnt binds and activates to Frizzled. In this case however activated Frizzled causes a coupled G-protein to activate a phospholipase (PLC), which interacts with and splits PIP2 into DAG and IP3. IP3 can then bind to a receptor on the endoplasmic reticulum to release intracellular calcium stores, to induce calcium-dependent gene expression.


Wnt signaling pathways and cancer

The Wnt signaling pathways are critical in cell-cell signaling during normal development and embryogenesis and required for maintenance of adult tissue, therefore it is not difficult to understand why disruption in Wnt signaling pathways can promote human
degenerative disease Degenerative disease is the result of a continuous process based on degenerative cell changes, affecting tissues or organs, which will increasingly deteriorate over time. In neurodegenerative diseases, cells of the central nervous system stop wor ...
and
cancer Cancer is a group of diseases involving abnormal cell growth with the potential to invade or spread to other parts of the body. These contrast with benign tumors, which do not spread. Possible signs and symptoms include a lump, abnormal b ...
. The Wnt signaling pathways are complex, involving many different elements, and therefore have many targets for misregulation. Mutations that cause constitutive activation of the Wnt signaling pathway lead to tumor formation and cancer. Aberrant activation of the Wnt pathway can lead to increase cell proliferation. Current research is focused on the action of the Wnt signaling pathway the regulation of stem cell choice to proliferate and self renew. This action of Wnt signaling in the possible control and maintenance of stem cells, may provide a possible treatment in cancers exhibiting aberrant Wnt signaling.


TGF-β superfamily

" TGF" (Transforming Growth Factor) is a family of proteins that includes 33 members that encode dimeric, secreted polypeptides that regulate development. Many developmental processes are under its control including gastrulation, axis symmetry of the body, organ morphogenesis, and tissue homeostasis in adults. All
TGF-β Transforming growth factor beta (TGF-β) is a multifunctional cytokine belonging to the transforming growth factor superfamily that includes three different mammalian isoforms (TGF-β 1 to 3, HGNC symbols TGFB1, TGFB2, TGFB3) and many other s ...
ligands bind to either Type I or Type II receptors, to create heterotetramic complexes.


TGF-β pathway

The TGF-β pathway regulates many cellular processes in developing embryo and adult organisms, including cell growth, differentiation, apoptosis, and
homeostasis In biology, homeostasis ( British also homoeostasis) (/hɒmɪə(ʊ)ˈsteɪsɪs/) is the state of steady internal, physical, and chemical conditions maintained by living systems. This is the condition of optimal functioning for the organism and ...
. There are five kinds of type II receptors and seven types of type I receptors in humans and other mammals. These receptors are known as "dual-specificity kinases" because their cytoplasmic kinase domain has weak tyrosine kinase activity but strong serine/ threonine kinase activity. When a TGF-β superfamily ligand binds to the type II receptor, it recruits a type I receptor and activates it by phosphorylating the serine or threonine residues of its "GS" box. This forms an activation complex that can then phosphorylate SMAD proteins.


SMAD pathway

There are three classes of SMADs: # Receptor-regulated SMAD ( R-SMAD) # Common-mediator SMAD (Co-SMAD) # Inhibitory SMAD ( I-SMAD) Examples of SMADs in each class: The TGF-β superfamily activates members of the SMAD family, which function as transcription factors. Specifically, the type I receptor, activated by the type II receptor, phosphorylates R-SMADs that then bind to the co-SMAD, SMAD4. The R-SMAD/Co-SMAD forms a complex with importin and enters the nucleus, where they act as transcription factors and either up-regulate or down-regulate in the expression of a target gene. Specific TGF-β ligands will result in the activation of either the SMAD2/3 or the SMAD1/5 R-SMADs. For instance, when activin, Nodal, or TGF-β ligand binds to the receptors, the phosphorylated receptor complex can activate SMAD2 and SMAD3 through phosphorylation. However, when a BMP ligand binds to the receptors, the phosphorylated receptor complex activates SMAD1 and SMAD5. Then, the Smad2/3 or the Smad1/5 complexes form a dimer complex with SMAD4 and become transcription factors. Though there are many R-SMADs involved in the pathway, there is only one co-SMAD, SMAD4.


Non-SMAD pathway

Non-Smad signaling proteins contribute to the responses of the TGF-β pathway in three ways. First, non-Smad signaling pathways phosphorylate the Smads. Second, Smads directly signal to other pathways by communicating directly with other signaling proteins, such as kinases. Finally, the TGF-β receptors directly phosphorylate non-Smad proteins.


Members of TGF-β superfamily


1. TGF-β family

This family includes TGF-β1, TGF-β2,
TGF-β3 Transforming growth factor beta-3 is a protein that in humans is encoded by the gene. It is a type of protein, known as a cytokine, which is involved in cell differentiation, embryogenesis and development. It belongs to a large family of cytokin ...
, and TGF-β5. They are involved in positively and negatively regulation of
cell division Cell division is the process by which a parent cell divides into two daughter cells. Cell division usually occurs as part of a larger cell cycle in which the cell grows and replicates its chromosome(s) before dividing. In eukaryotes, there ...
, the formation of the
extracellular matrix In biology, the extracellular matrix (ECM), also called intercellular matrix, is a three-dimensional network consisting of extracellular macromolecules and minerals, such as collagen, enzymes, glycoproteins and hydroxyapatite that provide s ...
between cells, apoptosis, and embryogenesis. They bind to TGF-β type II receptor (TGFBRII). TGF-β1 stimulates the synthesis of collagen and
fibronectin Fibronectin is a high- molecular weight (~500-~600 kDa) glycoprotein of the extracellular matrix that binds to membrane-spanning receptor proteins called integrins. Fibronectin also binds to other extracellular matrix proteins such as coll ...
and inhibits the degradation of the
extracellular matrix In biology, the extracellular matrix (ECM), also called intercellular matrix, is a three-dimensional network consisting of extracellular macromolecules and minerals, such as collagen, enzymes, glycoproteins and hydroxyapatite that provide s ...
. Ultimately, it increases the production of extracellular matrix by
epithelial cells Epithelium or epithelial tissue is one of the four basic types of animal tissue, along with connective tissue, muscle tissue and nervous tissue. It is a thin, continuous, protective layer of compactly packed cells with a little intercellu ...
. TGF-β proteins regulate epithelia by controlling where and when they branch to form kidney, lung, and salivary gland ducts.


2. Bone morphogenetic protein (BMPs) family

Members of the BMP family were originally found to induce bone formation, as their name suggests. However, BMPs are very multifunctional and can also regulate apoptosis,
cell migration Cell migration is a central process in the development and maintenance of multicellular organisms. Tissue formation during embryonic development, wound healing and immune responses all require the orchestrated movement of cells in particular dir ...
,
cell division Cell division is the process by which a parent cell divides into two daughter cells. Cell division usually occurs as part of a larger cell cycle in which the cell grows and replicates its chromosome(s) before dividing. In eukaryotes, there ...
, and differentiation. They also specify the anterior/posterior axis, induce growth, and regulate
homeostasis In biology, homeostasis ( British also homoeostasis) (/hɒmɪə(ʊ)ˈsteɪsɪs/) is the state of steady internal, physical, and chemical conditions maintained by living systems. This is the condition of optimal functioning for the organism and ...
. The BMPs bind to the bone morphogenetic protein receptor type II (BMPR2). Some of the proteins of the BMP family are BMP4 and BMP7. BMP4 promotes bone formation, causes cell death, or signals the formation of epidermis, depending on the tissue it is acting on. BMP7 is crucial for kidney development, sperm synthesis, and neural tube polarization. Both BMP4 and BMP7 regulate mature ligand stability and processing, including degrading ligands in lysosomes. BMPs act by diffusing from the cells that create them.


Other members of TGF-β superfamily

* Vg1 Family * Activin Family ** Involved in embryogenesis and osteogenesis ** Regulate insulin and pituitary, gonadal, and hypothalamic hormones ** Nerve cell survival factors **3 Activins: Activin A, Activin B and Activin AB. * Glial-Derived Neurotrophic Factor (GDNF) ** Needed for kidney and enteric neuron differentiation * Müllerian Inhibitory Factor ** Involved in mammalian sex determination * Nodal ** Binds to Activin A Type 2B receptor ** Forms receptor complex with Activin A Type 1B receptor or with Activin A Type 1C receptor. * Growth and differentiation factors (GDFs)


Summary table of TGF-β signaling pathway


Examples

Growth factor and clotting factors are paracrine signaling agents. The local action of growth factor signaling plays an especially important role in the development of tissues. Also, retinoic acid, the active form of vitamin A, functions in a paracrine fashion to regulate gene expression during embryonic development in higher animals. In insects,
Allatostatin Allatostatins are neuropeptide hormones in insects and crustacea. They have a twofold function: they both inhibit the generation of juvenile hormone and reduce their food intake. They are therefore putative targets for insecticide research.{{cite jo ...
controls growth through paracrine action on the corpora allata. In mature organisms, paracrine signaling is involved in responses to
allergen An allergen is a type of antigen that produces an abnormally vigorous immune response in which the immune system fights off a perceived threat that would otherwise be harmless to the body. Such reactions are called allergies. In technical t ...
s, tissue repair, the formation of scar tissue, and blood clotting.


See also

* cAMP dependent pathway *
Crosstalk (biology) Biological crosstalk refers to instances in which one or more components of one signal transduction pathway affects another. This can be achieved through a number of ways with the most common form being crosstalk between proteins of signaling casc ...
* Lipid signaling *
Local hormone ''B))'' Local hormones are a large group of  signaling molecules that do not circulate within the blood. Local hormones are produced by nerve and gland cells and bind to either neighboring cells or the same type of cell that prod ...
– either a paracrine hormone, or a hormone acting in both a paracrine and an endocrine fashion * MAPK signaling pathway * Netpath – A curated resource of signal transduction pathways in humans * Paracrine regulator


References


External links

* * {{Cell signaling Signal transduction