matrix field
   HOME

TheInfoList



OR:

In
abstract algebra In mathematics, more specifically algebra, abstract algebra or modern algebra is the study of algebraic structures. Algebraic structures include group (mathematics), groups, ring (mathematics), rings, field (mathematics), fields, module (mathe ...
, a matrix field is a
field Field may refer to: Expanses of open ground * Field (agriculture), an area of land used for agricultural purposes * Airfield, an aerodrome that lacks the infrastructure of an airport * Battlefield * Lawn, an area of mowed grass * Meadow, a grass ...
with
matrices Matrix most commonly refers to: * ''The Matrix'' (franchise), an American media franchise ** ''The Matrix'', a 1999 science-fiction action film ** "The Matrix", a fictional setting, a virtual reality environment, within ''The Matrix'' (franchis ...
as elements. In field theory there are two types of fields:
finite fields In mathematics, a finite field or Galois field (so-named in honor of Évariste Galois) is a field that contains a finite number of elements. As with any field, a finite field is a set on which the operations of multiplication, addition, subt ...
and
infinite Infinite may refer to: Mathematics * Infinite set, a set that is not a finite set *Infinity, an abstract concept describing something without any limit Music *Infinite (group), a South Korean boy band *''Infinite'' (EP), debut EP of American m ...
fields. There are several examples of matrix fields of different characteristic and cardinality. There is a finite matrix field of cardinality ''p'' for each
prime A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only ways ...
''p''. One can find several finite matrix fields of characteristic ''p'' for any given prime number ''p''. In general, corresponding to each finite field there is a matrix field. Since any two finite fields of equal cardinality are isomorphic, the elements of a
finite field In mathematics, a finite field or Galois field (so-named in honor of Évariste Galois) is a field that contains a finite number of elements. As with any field, a finite field is a set on which the operations of multiplication, addition, subtr ...
can be represented by matrices. Contrary to the general case for
matrix multiplication In mathematics, particularly in linear algebra, matrix multiplication is a binary operation that produces a matrix from two matrices. For matrix multiplication, the number of columns in the first matrix must be equal to the number of rows in the s ...
, multiplication is
commutative In mathematics, a binary operation is commutative if changing the order of the operands does not change the result. It is a fundamental property of many binary operations, and many mathematical proofs depend on it. Most familiar as the name of ...
in a matrix field (if the usual operations are used). Since addition and multiplication of matrices have all needed properties for field operations except for commutativity of multiplication and existence of
multiplicative inverse In mathematics, a multiplicative inverse or reciprocal for a number ''x'', denoted by 1/''x'' or ''x''−1, is a number which when multiplied by ''x'' yields the multiplicative identity, 1. The multiplicative inverse of a fraction ''a''/ ...
s, one way to verify if a set of matrices is a field with the usual operations of matrix sum and multiplication is to check whether # the set is closed under addition, subtraction and multiplication; # the neutral element for matrix addition (that is, the
zero matrix In mathematics, particularly linear algebra, a zero matrix or null matrix is a matrix all of whose entries are zero. It also serves as the additive identity of the additive group of m \times n matrices, and is denoted by the symbol O or 0 followed ...
) is included; # multiplication is commutative; # the set contains a multiplicative identity (note that this does not have to be the identity matrix); and # each matrix that is not the zero matrix has a
multiplicative inverse In mathematics, a multiplicative inverse or reciprocal for a number ''x'', denoted by 1/''x'' or ''x''−1, is a number which when multiplied by ''x'' yields the multiplicative identity, 1. The multiplicative inverse of a fraction ''a''/ ...
.


Examples

1. Take the set of all ''n'' × ''n'' matrices of the form :\begin a & a & \cdots & a \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end with a\in \mathbb that is, matrices filled with zeroes except for the first row, which is filled with the same
real Real may refer to: Currencies * Brazilian real (R$) * Central American Republic real * Mexican real * Portuguese real * Spanish real * Spanish colonial real Music Albums * ''Real'' (L'Arc-en-Ciel album) (2000) * ''Real'' (Bright album) (2010) ...
constant a. These matrices are commutative for multiplication: :\begin a & a & \cdots & a \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end \begin b & b & \cdots & b \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end = \begin ab & ab & \cdots & ab \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end =\begin b & b & \cdots & b \\ 0 & 0 & & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end \begin a & a & \cdots & a \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end. The multiplicative identity is \begin 1 & 1 & \cdots & 1 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end. The multiplicative inverse of a matrix \begin a & a & \cdots & a \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end with a\neq 0 is given by \begin \frac & \frac & \cdots & \frac \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end. It is easy to see that this matrix field is isomorphic to the field of real numbers under the map a \mapsto \begin a & a & \cdots & a \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end. 2. The set of matrices of the form :\begin a & -b \\ b & a \end, where a and b range over the field of real numbers, forms a matrix field which is isomorphic to the field \mathbb of
complex numbers In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the form ...
: a corresponds to the
real part In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the form ...
of the number, while b corresponds to the
imaginary part In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the form ...
. So the number 2+3i, for example, would be represented as :\begin 2 & -3 \\ 3 & 2 \end. One can easily verify that i^2 = -1: :\begin 0 & -1 \\ 1 & 0 \end^ = \begin -1 & 0 \\ 0 & -1 \end, and also, by computing a
matrix exponential In mathematics, the matrix exponential is a matrix function on square matrices analogous to the ordinary exponential function. It is used to solve systems of linear differential equations. In the theory of Lie groups, the matrix exponential give ...
, that Euler's identity, e^=-1 is valid: :e^ = \begin -1 & 0 \\ 0 & -1 \end.


See also

* Field theory *
Finite field In mathematics, a finite field or Galois field (so-named in honor of Évariste Galois) is a field that contains a finite number of elements. As with any field, a finite field is a set on which the operations of multiplication, addition, subtr ...
* Algebraic structure *
Galois theory In mathematics, Galois theory, originally introduced by Évariste Galois, provides a connection between field theory and group theory. This connection, the fundamental theorem of Galois theory, allows reducing certain problems in field theory to ...
* Matrix ring *
Matrix group In mathematics, a matrix group is a group ''G'' consisting of invertible matrices over a specified field ''K'', with the operation of matrix multiplication. A linear group is a group that is isomorphic to a matrix group (that is, admitting a fa ...
*


References

{{reflist Field (mathematics) Algebraic structures Matrices