HOME

TheInfoList



OR:

In
physics Physics is the natural science that studies matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge which r ...
, an entropic force acting in a system is an
emergent phenomenon In philosophy, systems theory, science, and art, emergence occurs when an entity is observed to have properties its parts do not have on their own, properties or behaviors that emerge only when the parts interact in a wider whole. Emergence ...
resulting from the entire system's statistical tendency to increase its
entropy Entropy is a scientific concept, as well as a measurable physical property, that is most commonly associated with a state of disorder, randomness, or uncertainty. The term and the concept are used in diverse fields, from classical thermodynam ...
, rather than from a particular underlying force on the atomic scale.


Mathematical formulation

In the
canonical ensemble In statistical mechanics, a canonical ensemble is the statistical ensemble that represents the possible states of a mechanical system in thermal equilibrium with a heat bath at a fixed temperature. The system can exchange energy with the heat ...
, the entropic force \mathbf F associated to a macrostate partition \ is given by: \mathbf(\mathbf) = T \nabla_ S(\mathbf), _ where T is the temperature, S(\mathbf) is the entropy associated to the macrostate \mathbf and \mathbf is the present macrostate.


Examples


Pressure of an ideal gas

The internal energy of an
ideal gas An ideal gas is a theoretical gas composed of many randomly moving point particles that are not subject to interparticle interactions. The ideal gas concept is useful because it obeys the ideal gas law, a simplified equation of state, and is a ...
depends only on its temperature, and not on the volume of its containing box, so it is not an
energy In physics, energy (from Ancient Greek: ἐνέργεια, ''enérgeia'', “activity”) is the quantitative property that is transferred to a body or to a physical system, recognizable in the performance of work and in the form of hea ...
effect that tends to increase the volume of the box as gas
pressure Pressure (symbol: ''p'' or ''P'') is the force applied perpendicular to the surface of an object per unit area over which that force is distributed. Gauge pressure (also spelled ''gage'' pressure)The preferred spelling varies by country and e ...
does. This implies that the
pressure Pressure (symbol: ''p'' or ''P'') is the force applied perpendicular to the surface of an object per unit area over which that force is distributed. Gauge pressure (also spelled ''gage'' pressure)The preferred spelling varies by country and e ...
of an ideal gas has an entropic origin. What is the origin of such an entropic force? The most general answer is that the effect of thermal fluctuations tends to bring a thermodynamic system toward a macroscopic state that corresponds to a maximum in the number of microscopic states (or micro-states) that are compatible with this macroscopic state. In other words, thermal fluctuations tend to bring a system toward its macroscopic state of maximum
entropy Entropy is a scientific concept, as well as a measurable physical property, that is most commonly associated with a state of disorder, randomness, or uncertainty. The term and the concept are used in diverse fields, from classical thermodynam ...
.


Brownian motion

The entropic approach to Brownian movement was initially proposed by R. M. Neumann. Neumann derived the entropic force for a particle undergoing three-dimensional Brownian motion using the
Boltzmann equation The Boltzmann equation or Boltzmann transport equation (BTE) describes the statistical behaviour of a thermodynamic system not in a state of equilibrium, devised by Ludwig Boltzmann in 1872.Encyclopaedia of Physics (2nd Edition), R. G. Lerne ...
, denoting this force as a ''diffusional driving force'' or ''radial force''. In the paper, three example systems are shown to exhibit such a force: * electrostatic system of
molten salt Molten salt is salt which is solid at standard temperature and pressure but enters the liquid phase due to elevated temperature. Regular table salt has a melting point of 801 °C (1474°F) and a heat of fusion of 520 J/g.Journal of Chemical T ...
* surface tension and * Elasticity of rubber.


Polymers

A standard example of an entropic force is the elasticity of a freely-jointed
polymer A polymer (; Greek '' poly-'', "many" + ''-mer'', "part") is a substance or material consisting of very large molecules called macromolecules, composed of many repeating subunits. Due to their broad spectrum of properties, both synthetic a ...
molecule. For an ideal chain, maximizing its entropy means reducing the distance between its two free ends. Consequently, a force that tends to collapse the chain is exerted by the ideal chain between its two free ends. This entropic force is proportional to the distance between the two ends. The entropic force by a freely-jointed chain has a clear mechanical origin, and can be computed using constrained Lagrangian dynamics. With regards to biological polymers, there appears to be an intricate link between the entropic force and function. For example, disordered polypeptide segments – in the context of the folded regions of the same polypeptide chain – have been shown to generate an entropic force that has functional implications.


Hydrophobic force

Another example of an entropic force is the
hydrophobic In chemistry, hydrophobicity is the physical property of a molecule that is seemingly repelled from a mass of water (known as a hydrophobe). In contrast, hydrophiles are attracted to water. Hydrophobic molecules tend to be nonpolar and, t ...
force. At room temperature, it partly originates from the loss of entropy by the 3D network of water molecules when they interact with molecules of dissolved substance. Each water molecule is capable of * donating two hydrogen bonds through the two protons * accepting two more hydrogen bonds through the two sp3-hybridized lone pairs Therefore, water molecules can form an extended three-dimensional network. Introduction of a non-hydrogen-bonding surface disrupts this network. The water molecules rearrange themselves around the surface, so as to minimize the number of disrupted hydrogen bonds. This is in contrast to hydrogen fluoride (which can accept 3 but donate only 1) or
ammonia Ammonia is an inorganic compound of nitrogen and hydrogen with the formula . A stable binary hydride, and the simplest pnictogen hydride, ammonia is a colourless gas with a distinct pungent smell. Biologically, it is a common nitrogenous wa ...
(which can donate 3 but accept only 1), which mainly form linear chains. If the introduced surface had an ionic or polar nature, there would be water molecules standing upright on 1 (along the axis of an orbital for ionic bond) or 2 (along a resultant polarity axis) of the four sp3 orbitals. These orientations allow easy movement, i.e. degrees of freedom, and thus lowers entropy minimally. But a non-hydrogen-bonding surface with a moderate curvature forces the water molecule to sit tight on the surface, spreading 3 hydrogen bonds tangential to the surface, which then become locked in a
clathrate A clathrate is a chemical substance consisting of a lattice that traps or contains molecules. The word ''clathrate'' is derived from the Latin (), meaning ‘with bars, latticed’. Most clathrate compounds are polymeric and completely envelop t ...
-like basket shape. Water molecules involved in this clathrate-like basket around the non-hydrogen-bonding surface are constrained in their orientation. Thus, any event that would minimize such a surface is entropically favored. For example, when two such hydrophobic particles come very close, the clathrate-like baskets surrounding them merge. This releases some of the water molecules into the bulk of the water, leading to an increase in entropy. Another related and counter-intuitive example of entropic force is
protein folding Protein folding is the physical process by which a protein chain is translated to its native three-dimensional structure, typically a "folded" conformation by which the protein becomes biologically functional. Via an expeditious and reproduc ...
, which is a
spontaneous process In thermodynamics, a spontaneous process is a process which occurs without any external input to the system. A more technical definition is the time-evolution of a system in which it releases free energy and it moves to a lower, more thermodynamic ...
and where hydrophobic effect also plays a role. Structures of water-soluble proteins typically have a core in which hydrophobic
side chains In organic chemistry and biochemistry, a side chain is a chemical group that is attached to a core part of the molecule called the "main chain" or backbone. The side chain is a hydrocarbon branching element of a molecule that is attached to a ...
are buried from water, which stabilizes the folded state. Charged and polar side chains are situated on the solvent-exposed surface where they interact with surrounding water molecules. Minimizing the number of hydrophobic side chains exposed to water is the principal driving force behind the folding process, although formation of hydrogen bonds within the protein also stabilizes protein structure.


Colloids

Entropic forces are important and widespread in the physics of colloids, where they are responsible for the
depletion force A depletion force is an effective attractive force that arises between large colloidal particles that are suspended in a dilute solution of ''depletants'', which are smaller solutes that are preferentially excluded from the vicinity of the large p ...
, and the ordering of hard particles, such as the crystallization of hard spheres, the isotropic- nematic transition in liquid crystal phases of hard rods, and the ordering of hard polyhedra. Because of this, entropic forces can be an important driver of
self-assembly Self-assembly is a process in which a disordered system of pre-existing components forms an organized structure or pattern as a consequence of specific, local interactions among the components themselves, without external direction. When the ...
Entropic forces arise in colloidal systems due to the osmotic pressure that comes from particle crowding. This was first discovered in, and is most intuitive for, colloid-polymer mixtures described by the Asakura–Oosawa model. In this model, polymers are approximated as finite-sized spheres that can penetrate one another, but cannot penetrate the colloidal particles. The inability of the polymers to penetrate the colloids leads to a region around the colloids in which the polymer density is reduced. If the regions of reduced polymer density around two colloids overlap with one another, by means of the colloids approaching one another, the polymers in the system gain an additional free volume that is equal to the volume of the intersection of the reduced density regions. The additional free volume causes an increase in the entropy of the polymers, and drives them to form locally dense-packed aggregates. A similar effect occurs in sufficiently dense colloidal systems without polymers, where osmotic pressure also drives the local dense packing of colloids into a diverse array of structures that can be rationally designed by modifying the shape of the particles. These effects are for anisotropic particles referred to as directional entropic forces.


Cytoskeleton

Contractile forces in biological cells are typically driven by
molecular motor Molecular motors are natural (biological) or artificial molecular machines that are the essential agents of movement in living organisms. In general terms, a motor is a device that consumes energy in one form and converts it into motion or mech ...
s associated with the
cytoskeleton The cytoskeleton is a complex, dynamic network of interlinking protein filaments present in the cytoplasm of all cells, including those of bacteria and archaea. In eukaryotes, it extends from the cell nucleus to the cell membrane and is com ...
. However, a growing body of evidence shows that contractile forces may also be of entropic origin. The foundational example is the action of microtubule crosslinker Ase1, which localizes to microtubule overlaps in the
mitotic spindle In cell biology, the spindle apparatus refers to the cytoskeletal structure of eukaryotic cells that forms during cell division to separate sister chromatids between daughter cells. It is referred to as the mitotic spindle during mitosis, a pr ...
. Molecules of Ase1 are confined to the microtubule overlap, where they are free to diffuse one-dimensionally. Analogically to an ideal gas in a container, molecules of Ase1 generate pressure on the overlap ends. This pressure drives the overlap expansion, which results in the contractile sliding of the microtubules. An analogous example was found in the
actin Actin is a family of globular multi-functional proteins that form microfilaments in the cytoskeleton, and the thin filaments in muscle fibrils. It is found in essentially all eukaryotic cells, where it may be present at a concentration of ov ...
cytoskeleton. Here, the actin-bundling protein
anillin Anillin is a conserved protein implicated in cytoskeletal dynamics during cellularization and cytokinesis. The ''ANLN'' gene in humans and the scraps gene in ''Drosophila'' encode Anillin. In 1989, anillin was first isolated in embryos of ''Dros ...
drives actin contractility in cytokinetic rings.


Controversial examples

Some forces that are generally regarded as conventional forces have been argued to be actually entropic in nature. These theories remain controversial and are the subject of ongoing work.
Matt Visser Matt Visser is a mathematics Professor at Victoria University of Wellington, in New Zealand. Work Visser's research interests include general relativity, quantum field theory and cosmology. Visser has produced a large number of research papers ...
, professor of mathematics at Victoria University of Wellington, NZ in "Conservative Entropic Forces" criticizes selected approaches but generally concludes:


Gravity

In 2009, Erik Verlinde argued that gravity can be explained as an entropic force. It claimed (similar to Jacobson's result) that gravity is a consequence of the "information associated with the positions of material bodies". This model combines the thermodynamic approach to gravity with
Gerard 't Hooft Gerardus (Gerard) 't Hooft (; born July 5, 1946) is a Dutch theoretical physicist and professor at Utrecht University, the Netherlands. He shared the 1999 Nobel Prize in Physics with his thesis advisor Martinus J. G. Veltman "for elucidating th ...
's
holographic principle The holographic principle is an axiom in string theories and a supposed property of quantum gravity that states that the description of a volume of space can be thought of as encoded on a lower-dimensional boundary to the region — such as a ...
. It implies that gravity is not a
fundamental interaction In physics, the fundamental interactions, also known as fundamental forces, are the interactions that do not appear to be reducible to more basic interactions. There are four fundamental interactions known to exist: the gravitational and electro ...
, but an
emergent phenomenon In philosophy, systems theory, science, and art, emergence occurs when an entity is observed to have properties its parts do not have on their own, properties or behaviors that emerge only when the parts interact in a wider whole. Emergence ...
.


Other forces

In the wake of the discussion started by Verlinde, entropic explanations for other fundamental forces have been suggested, including
Coulomb's law Coulomb's inverse-square law, or simply Coulomb's law, is an experimental law of physics that quantifies the amount of force between two stationary, electrically charged particles. The electric force between charged bodies at rest is convention ...
. The same approach was argued to explain
dark matter Dark matter is a hypothetical form of matter thought to account for approximately 85% of the matter in the universe. Dark matter is called "dark" because it does not appear to interact with the electromagnetic field, which means it does not a ...
,
dark energy In physical cosmology and astronomy, dark energy is an unknown form of energy that affects the universe on the largest scales. The first observational evidence for its existence came from measurements of supernovas, which showed that the univ ...
and Pioneer effect.


Links to adaptive behavior

It was argued that causal entropic forces lead to spontaneous emergence of tool use and social cooperation. Causal entropic forces by definition maximize
entropy production Entropy production (or generation) is the amount of entropy which is produced in any irreversible processes such as heat and mass transfer processes including motion of bodies, heat exchange, fluid flow, substances expanding or mixing, anelastic d ...
between the present and future time horizon, rather than just greedily maximizing instantaneous entropy production like typical entropic forces. A formal simultaneous connection between the mathematical structure of the discovered laws of nature, intelligence and the entropy-like measures of complexity was previously noted in 2000 by Andrei Soklakov in the context of Occam's razor principle.


See also

* Colloids * Nanomechanics *
Thermodynamics Thermodynamics is a branch of physics that deals with heat, work, and temperature, and their relation to energy, entropy, and the physical properties of matter and radiation. The behavior of these quantities is governed by the four laws of th ...
*
Abraham–Lorentz force In the physics of electromagnetism, the Abraham–Lorentz force (also Lorentz–Abraham force) is the recoil force on an accelerating charged particle caused by the particle emitting electromagnetic radiation by self-interaction. It is also called ...
* Entropic gravity *
Entropy Entropy is a scientific concept, as well as a measurable physical property, that is most commonly associated with a state of disorder, randomness, or uncertainty. The term and the concept are used in diverse fields, from classical thermodynam ...
*
Introduction to entropy In thermodynamics, entropy is a numerical quantity that shows that many physical processes can go in only one direction in time. For example, you can pour cream into coffee and mix it, but you cannot "unmix" it; you can burn a piece of wood, but ...
* Entropic elasticity of an ideal chain *
Hawking radiation Hawking radiation is theoretical black body radiation that is theorized to be released outside a black hole's event horizon because of relativistic quantum effects. It is named after the physicist Stephen Hawking, who developed a theoretical a ...
*
Data clustering Cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group (called a cluster) are more similar (in some sense) to each other than to those in other groups (clusters). It is a main task of ...
*
Depletion force A depletion force is an effective attractive force that arises between large colloidal particles that are suspended in a dilute solution of ''depletants'', which are smaller solutes that are preferentially excluded from the vicinity of the large p ...
*
Maximal entropy random walk Maximal entropy random walk (MERW) is a popular type of biased random walk on a graph, in which transition probabilities are chosen accordingly to the principle of maximum entropy, which says that the probability distribution which best represents ...


References

{{Reflist, 30em Materials science Thermodynamic entropy Soft matter